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Abstract

The Air Force Logistics Command'L S currently uses a simple

linear regression model to forecast overseas Second Destination

Transportation (SDT) general cargo tonnage requirements for specific

geographical areas. The independent variable for the model is the total

flying hours for each geographical area while the dependent variable is

the general cargo SDT tonnage requirement. This Fswoah explored the

use of a multivariable approach for developing multiple regression and

neural network models which was based on the breakout of the total flying

hour variable into separate aircraft flying hours and the additiob of

military population variables.

The purpose of this research was to develop multiple regression and

neural network models for predicting Pacificoand European tU3AE4?

Military Airlift Command l**e-) and Military Sealift Command 5(m general

cargo tonnage requirements that were more accurate forecasting models

than the simple regression forecasting models presently used by

AFLC/DSXR. Once the models were developed, the multiple regression and

neural network models were compared to determine which type of model was

statistically more accurate.

Neural networks are an adaptive information processing system

loosely based on the information processing capability of the human brain

that mathematically develops associations between particular independent

and dependent variables. Recent research indicates neural network models

are an alternative to conventional mathematical techniques for solving

problems that do not have a well defined model or theory.N Unlike

xvi



regression models, neural networks determine the equation and parameters

for independent variables, thereby eliminating the difficulty of

prespecifying the model.

Overall, the use multivariable model development approach

significantly increases SDT forecasting accuracy. The neural network

models were the most accurate forecasting models. In three out of the

four data sets used, the multiple regression models produced more

accurate forecasts than the AFLC/DSXR simple regression model. The

application of either model would significantly reduce the financial

implications of overestimating and underestimating SDT tonnage

requirements.
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FORECASTING AIR FORCE LOGISTICS COMMAND

SECOND DESTINATION TRANSPORTATION:

AN APPLICATION OF MULTIPLE REGRESSION ANALYSIS AND

NEURAL NETWORKS

I. Introduction

Overview

The Air Force Logistics Command (AFLC) is responsible for providing

logistical support for the Air Force. A key element to AFLC's

effectiveness in providing logistical support is the transportation

system which adds the time and place utility for all logistical support.

The increasingly severe Air Force funding limitations have placed a

greater emphasis on the transportation system to provide timely

distribution of logistical support to the end users at a minimum cost.

Recent budget reductions in Second Destination Transportation (SDT)

have reduced the funding level to 80 percent for fiscal year 1989 and

1990. The impact has resulted in the following:

1. Decreased logistical support to the end user.

2. Increased cannibalization of parts.

3. Increased down time for parts.

4. Increased transit time for parts.

5. Decreased stockage effectiveness.

6. Incomplete War Readiness Materiel (WRM) spares kits.

7. Accruing secondary costs (temporary storage, handling
charges, expiring warranties, corrosion).

8. Decreasing theater sustainability (spares, munitions).

1



9. U.S. manufactured vehicles destined for overseas bases
being held at ports.

10. The retention of munitions in CONUS (Continental United

States] while shortages exist at overseas locations.

11. Malpositioned munitions in operational theaters. (19)

Another result ot the recent budget reductions for SDT and the topic

of this research was the requirement for a statistically valid and

accurate SDT forecasting method. Underestimations of the SDT requirement

compound the problem of providing logistical support during budget

reductions. Overestimations divert scarce funds from other Air Force

programs.

In the Department of Defense (DOD), SDT budget requirements are a

separate line item under Major Force Program (MFP) VII, Central Supply

and Maintenance (20:3-4). Each branch of the military services develops

SDT budget requirements which are included in the operations and

maintenance budget for each respective service. Within the Air Force,

the Air Force Logistics Command controls approximately 75-80 percent of

the SDT budget (20:32). The remainder of the budget is divided between

the other major commands and the Directorate of Administration, Office of

the Chief of Staff. The Plans and Programs Division, Directorate of

Transportation, Headquarters United States Air Force (HQ USAF/LETX),

consolidates the forecasted SDT budget requirements from each of the

major commands and the Directorate of Administration into the Air Force

SDT budget requirement.

The Budget and Requirements Division, Directorate of Programs and

Resources, Chief of Staff Distribution, Headquarters Air Force Logistics

Command (HQ AFLC/DSXR) is responsible for forecasting AFLC Second

Destination Transportation (SDT) funding requirements.

2



Definitions. In order to understand SDT, First Destination

Transportation (FDT) must be defined. According to Department of Defense

Instruction (DODI) 5000.8, First Destination Transportation is defined

as:

The movement of property from f.o.b. [free on board] point of
origin to the point at which the materiel, in the form required for
use, is first received for use or storage for subsequent
distribution in the military supply system. The costs of such
movement. (6:124)

In other words, First Destination Transportation is the inland

movement of newly acquired material from the contractor or vendor to the

first point of use or storage or to a CONUS port of embarkation for

onward moves to an overseas location (19).

Second Destination Transportation is defined as:

The subsequent movement of property for intradepartment or
interdepartment distribution from the point of storage at which
originally received from f.o.b. point of origin. The costs of such
movement. (6:124)

Second Destination Transportation can be described as all subsequent

movement of materials, including port handling. It covers all overocean

transportation of logistics cargo, all shipments from the ALC's (Air

Logistics Centers or depots), shipments between bases, and shipments from

bases to repair depots (19).

AFLC SDT budgeting and funding responsibilities are divided into six

major categories identified by Air Force Element of Expense/Investment

Account Codes (EEIC) (Table 1). The six categories represent five modes

of transport and the port handling requirement.

In addition to the six categories of shipments, there are fourteen

major programs. Table 2 displays these programs along with the

requirement sources. The requirement source is used to forecast future

3



tonnage requirements for each major program. This research was focused

on the general cargo program for overseas SDT tonnage.

Table 1

AFLC SDT Major Categories (20:34)

Category EEIC

Military Airlift Command (MAC) 454

Military Sealift Command (MSC) 461

Commercial Air 462

Commercial Surface 463

Logair 464

Port Handling 465

Table 2

Major Program and Requirement Source (19)

MajorProga Requirement Source
General Cargo Flying hour program
Logair Majcom (Major Command)

Program Unit
Priority Document

Fuel Miles/Fuel burn rate
Subsistence Overseas manpower
Air Munitions Majcom WRM (War Readiness

Material)/PTO
(Peacetime Operations)

CENTAF SWA-WRM (Central Air Force CENTAF
Southwest Asia-War Readiness Material)

New Vehicles Inventory Manager
Missiles Program Manager
Special Weapons Program Manager
PADS (Program Action Directives) Majcom/Air Logistics

Centers (ALC)
DOD Schools History
PCS (Permanent Change of Station) Civilians History
Commercial Paper Flying Hour Program
CCP (Container Collection Point) Flying Hour Program

4



Overseas general cargo is forecasted within the general cargo

program and the requirement source is the overseas flying hour program.

The overseas general cargo tonnage requirement is forecasted for two

modes of transport, airlift (MAC) and sealift (MSC) for each geographical

area by using a simple linear regression model. The flying hour program

is used as an independent variable for predicting future tonnage

requirements (dependent variable) for each mode of transport. The general

cargo tonnage requirements are further divided into five geographical

areas: Pacific (PACAF), Europe (USAFE), Northern (Greenland and Iceland),

Southern (USAFSO), and Alaska. The general cargo tonnage requirements

are divided into geographical areas for the following reasons:

1. The cost of shipment depends on distance moved and the weight of
the shipment.

2. Each geographical area has different general cargo tonnage
requirements.

3. The flying hours are programmed by geographical area. (19)

Table 3 depicts the costs of AFLC SDT for fiscal year 1989 by mode

and theater. The airlift and surface (sealift) shipment of cargo to

overseas bases represents 72 percent of the total SDT costs for FY 89.

The remaining 28 percent of the total costs is airlift and surface SDT

shipments within CONUS. By theater, PACAF and USAFE SDT shipments

represent 62 percent of the total SDT costs while CONUS and shipments to

other locations represent the remaining 38 percent.

Current Methodology. AFLC DSXR uses quarterly flying hours as an

independent variable in a simple linear regression model to predict

quarterly SDT general cargo tonnage requirements (dependent variable) for

specific geographical areas as shown in the following equation;

5



Y = PO + PIX

where: Y = historical (predicted) quarterly SDT tonnage
X = historical (programmed) quarterly flying hours
P0 = the y axis intercept
P, = flying hour parameter.

Table 3

FY 1989 SDT Costs (19)

Airlift Percent of Cost Total Cost ($ Million)

Overseas (MAC) 40 154

CONUS 19 75

Surface

Overseas (MSC) 32 125

CONUS 9 33

Total: 387

Theater

PACAF 25 97

USAFE 37 143

CONUS 29 112

Other 9 35

Total: 387

Historical flying hours and MAC and MSC tonnage requirements for

each geographical area are used to develop the simple linear regression

equations. Flying hours that are programmed six quarters into the future

are used to predict future tonnage requirements using the simple linear

regression equations that were developed from the historical data. The

flying hour independent variable is the total programmed flying hours for
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all aircraft assigned to each geographical area. This includes all

transient aircraft in the geographical area for over 60 days (19).

There are two reasons for using the flying hour program as the

independent variable in the simple regression model for predicting

overseas general cargo. First, the use of the flying hour program as the

independent variable is based on past experience (1:1). Variations in

airlift and sealift tonnage were directly related to variations in flying

hours (1:1). Second, the general cargo category is comprised of aircraft

spare parts and general base supply items (19). As long as the

relationship held constant, the use of the flying hour program as the

only independent variable was justified. Recent research conducted by

Strom indicated the relationship was not always constant and the

forecasting technique used by PSXR was not always valid (25:62).

AFLC/DSXR utilizes an iterative approach to achieve the best simple

regression model by beginning with the last 40 quarters of data and

eliminating the oldest quarter of data until the last 8 recent quarters

remain (19). After each iteration, the coefficient of correlation (r)

and the standard deviation of each variable is calculated for each model.

The model with the highest coefficient of correlation is used to predict

the future six quarters of airlift and sealift tonnage requirements for

each geographical area based on the quarterly programmed flying hours for

each geographical area. The coefficient of correlation is defined in the

following equation;

r = ± [1 - (SSE / SSY)]1/2

where: SSE = the unexplained sample variation
SSY = the total sample variation.
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In addition to the iterations, two types of data are used for the

simple linear regression model, smoothed and non-smoothed data. A

smoothing technique is used to reduce the quarterly variation in the MAC

and MSC tonnage requirements (19). This technique is based on a three

quarter moving average and is started by setting the first moving average

value equal to the earliest quarter value of the data set. The next

moving average value is equal to two times the earliest quarter added to

the second earliest quarter and the sum is then divided by three. The

next to the last moving average is equal to two times the last quarter

added to the next to the last quarter and the sum is then divided by

three. All the quarters in between are computed as a regular moving

average (19).

Once all the simple regression equations for MAC and MSC tonnage

have been computed for each geographical area through the iterative

technique, the simple regression equations (smoothed or nonsmoothed

developed equations) that produce the highest positive coefficient of

correlation for the regression model is used to forecast future SDT

tonnage requirements.

Specific Problem

Research conducted by Captain Stephen L. Strom in 1989 analyzed the

simple linear regression model used by DSXR to forecast SDT general cargo

requirements for PACAF and USAFE. Strom's research statistically

invalidated the iterative linear regression method used to predict MSC

general cargo SDT tonnage for PACAF and USAFE by showing how the flying

hour parameter (PI in the simple regression equation) statistically

changed after iterations were conducted. This instability in the flying
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hour parameter implied the model was invalid for predicting future

tonnage values (25:80-81). Strom's research did not statistically

invalidate the models used to predict MAC SDT tonnage for PACAF and

USAFE. Strom developed a Box-Jenkins model that was statistically more

accurate than DSXR's PACAF and USAFE MAC forecasting models, but failed

to develop a Box-Jenkins model that was statistically more accurate than

the DSXR PACAF and USAFE MSC forecasting models. Strom concluded that

further research is needed to develop a valid forecasting model that is

significantly more accurate than the one presently used by DSXR and

suggested the development and testing of a multiple regression model

(25:88).

Research Objectives

The usefulness of any forecasting model depends on how accurate it

can forecast. In order to develop forecasting models with improved

forecasting accuracy compared to the DSXR models, the data base of the

independent variable was increased by separating the total flying hour

variable into flying hours by aircraft type. Military population

variables were also added to the data base and used in developing the

models. The objectives of this research were to:

1. Develop multiple regression and neural network models using

flying hours by aircraft type and military population variables that were

statistically more accurate than the DSXR simple regression models.

2. Determine whether the neural network or multiple regression

models were more accurate forecasting models.

A neural network (neurocomputing) is an adaptive information

processing system that is 'trained' to develop associations between

9



particular inputs and a desired output. Neurocomputing is a rapidly

emerging technology that is being applied in areas such as complex

pattern recognition problems, identifying handwritten characters,

understanding speech, and economic forecasting. Neurocomputing has been

successfully used to solve problems that can not be solved using

conventional algorithmic methods (13:36-37).

Scope of the Research

Since there was a need for a statistically correct and accurate

forecasting model for the overseas general cargo program, this research

was limited to developing multiple regression and neural network models

for PACAF and USAFE MAC and MSC SDT requirements. In fiscal year 1989,

the PACAF and USAFE MAC SDT represented approximately 70% of the total

overseas MAC general cargo and the PACAF and USAFE MSC represented

approximately 92% of the total overseas MSC general cargo.

Plan of Analysis

Chapter II is a review of previous SDT research studies and

findings and also presents an introduction to neural networks and neural

network forecasting applications. Chapter III outlines the methodology

that was used to evaluate the DSXR simple regression models and to

develop and validate the multiple regression and neural network models.

The results and analysis of the PACAF and USAFE MSC data sets are

presented in Chapter IV. Chapter V presents the results and analysis of

the PACAF and USAFE MAC data sets. Finally, Chapter VI presents the

research findings, implications, and future research recommendations.
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11. Literature Review

This chapter is divided into four parts. The first part is a

presentation of previous SDT reports and research that have had an impact

on forecasting future SDT requirements. Part two examines the Navy and

Army methodology for forecasting SDT requirements. The third part

presents a background on neurocomputing and the backpropagating neural

networks. The fourth part presents previous research on the use of

neural networks in forecasting applications.

Previous SDT Reports and Research

The purpose of this section is to present research findings

concerning SDT forecasting by examining six previous reports:

1. LMI Task 75-4 (1976)

2. Foster Report (1977)

3. Grayson Report (1977)

4. Lamb and Sarnacki Research (1978)

5. Abell Report (1982)

6. Strom Research (1989).

LMI Task 75-4 (1976). This report was prepared by E. A. Narragon

and J. M. Neil at the request of the Assistant Secretary of Defense

(Installations and Logistics) (ASD(I&L)). The purpose of the report was

to identify opportunities for more effective and efficient utilization of

transportation resources. The report evaluated the control and cost

effectiveness of SDT funds by each military service and identified areas

requiring increased participation by ASD(I&L) (20:1).

The report identified many problems with the management of SDT by

the military services, but one finding that was related to forecasting
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indicated there were three principle causes for changes in the SDT

funding requirements:

1. Rate Changes: Changes in rates occur because of numerous
economic pressures upon commercial carriers and Single
Manager Operating Agencies:

2. Workload Changes: Changes in workload occur because
distribution patterns are modified through force level
changes, repositioning of stocks, and the like; and

3. Policy Decisions: Service and OSD policy decisions can
have a direct effect upon the total Service SDT program.
These decisions may result in changes in transportation
modes or workload. (20:61)

These three causes continually contribute to the difficulty of

accurately forecasting future SDT requirements. For example, a recent

(1988) policy decision made transportation priority 2 (TP-2) cargo

ineligible for airlift and has resulted in a significant decrease in

overseas MAC tonnage requirements. Now, all TP-2 cargo can no longer be

airlifted and must be transported by an alternate mode. In the case of

overseas TP-2 cargo, the alternate mode is sealift (19).

Foster Report (1977). This unpublished report titled, A Working

Paper on Second Destination Transportation (SDT) Forecasting, was

prepared by Newton W. Foster, Directorate of Management Sciences, Deputy

Chief of Staff Plans and Programs, Headquarters Air Force Logistics

Command (HQ AFLC, XRS), Wright-Patterson AFB, Ohio. This report is no

longer available, but was presented in Strom's research. The study was

accomplished in response to a review conducted by the Office of the

Secretary of Defense (OSD) that raised concern about the validity of

forecasting SDT using the flying hour program (25:29). The study had two

objectives:

1. To support the use of flying hours as a predictor of SDT.
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2. To develop a better method of predicting SDT if the flying

hour related computation could not be supported. (25:30)

Sixteen quarters of data (FY 73/1 through FY 76/4) were collected

under 21 different categories (i.e. manpower, requisitions, overseas

flying hours, worldwide flying hours) for six major geographical regions:

PACAF, USAFE, AAC, USAFSO, Northeastern, and Worldwide. The

transportation tonnage for MAC, MSC, and GBL (Worldwide) were also

collected. Regression analysis was used to find the relationships

between the 21 different categories of data and the transportation

tonnage through simple and multiple linear regression equations (25:30-

31).

The conclusions of the study were:

1. The forecast method [DSXR's simple linear regression
models], although not a totally valid predictor
of SDT tonnage, was the most logical predictor based on
the data provided and examined.

2. A better forecasting method for predicting SDT tonnage
for a particular geographical region by a specific
transportation mode was not evident based on the data
provided and examined. (25:31)

Grayson Report (1977). In this report, Major John Grayson

investigated the procedures used by AFLC to determine SDT budget

requirements. The author believed there was an over reliance on the

flying hour program to forecast future SDT requirements. The author

presented two reasons for this opinion:

1. Programmed flying hours were consistently overestimated
by an average of 25 percent compared to the actual flying
hours. This disparity between programmed and actual flying
hours questioned the effectiveness of the flying hour program
as an indicator of SDT requirements.

2. The generalized nature of the flying hour data did not account
for different types of aircraft. Different aircraft require
different logistical support, and any aircraft transitions

13



(F-4 and F-16 transition) would have a significant impact

on SDT requirements. (11:16-19)

Grayson recommended two specific actions to eliminate the perceived

over reliance on the flying hour program. First, AFLC and Air Staff

should continue to identify programs that are not dependent on the flying

hour program and separate them from the general cargo category (examples

of programs that have been separated from the general cargo category are

munitions and new vehicles). Second, AFLC should identify additional

independent variables and develop a multivariate formula for determining

SDT requirements (11:24-27).

Lamb and Sarnacki Research (1978). In this research, Captain

Christopher 3. Lamb and Captain Joseph B. Sarnacki developed a

computerized discontinuous linear regression model to forecast SDT

requirements utilizing flying hours ana manpower as the independent

variables. This research showed that the discontinuous linear regression

model was statistically more accurate than the delta factor model used by

AFLC during this time period. The research also showed that the flying

hour and manpower variables were reliable predictors of SDT tonnage

requirements (16:37-40).

The delta factor model consisted of manually computing a simple

ton/flying hour ratio for each geographical area based on historical

data. Programmed flying hours were used to determine future SDT

requirements and were directly related to tonnage requirements. In other

words, an increase in flying hours meant an increase in SDT tonnage;

however, tudget overestimations resulted because this was not always the

case. The research indicated this method was not an "acceptable and

understanddble decision-making tool for budget estimations" (16:7) by
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higher echelons (Office of the Secretary of Defense) and that a

requirement existed for a validated method (16:1-7).

Lamb and Sarnacki used the discontinuous linear regression model to

account for shifts or changes in slopes that were evident in scattergrams

of actual tonnage versus total programmed flying hours and actual tonnage

versus total manpower authorizations (16:14-18). This research was

limited to forecasting MAC SDT requirements. The general form of the

equation used is displayed in the following equation;

Z = PO + PIx + {P2 (X-Xl)Xpl + P3XD1)

+ {p 4 (X-X 2 )Xp2 + PSXD2)* + {P 6 (X-X 3 )Xp 3 + P7XD3

+ PBY + {P9 (Y-Y)YPI + POYDI}*

+ {P11(Y-Y2 )Yp2 + P12YD2}*

+ {(P13 (Y-Y3 )Yp3 + P14YDX + E

* Discontinuous adjustments

where: Z = Tonnage transported by MAC

X = Flying hours (either programmed or actual)

Y = Manpower (either programmed or actual)

XI , X2 , X3 , Yl, Y2 , Y3 = Discontinuous data points

)CP1,9 XP2 -P3 f YPIP YP29 YP3P

XDI' XD29 XD3 9 YDI' YD2' YD3 = Dummy variables defined as:

XPI = XDI = 1, if X > XI; otherwise 0

Xp2 = XD2 1 1, if X > X2; otherwise 0

XP3 = XD3 = 1, if X > X3; otherwise 0

YPI = YD1 = 1, if Y > YI; otherwise 0

Yp2 = YD2 = 1, if Y > Y2; otherwise 0

YP3 = YD3 = 1, if Y > Y3 ; otherwise 0
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P0 .  , P14 = Coefficients of regression

E = Random error component. (16:18-19)

This research had two major developments. First, a statistically

valid linear regression model was used to forecast future SDT

requirements that was more accurate than the delta model used by AFLC.

Second, the model showed that flying hours and manpower were valid

predictors of SDT tonnage and could be used in the same model.

Abell Report (1982). This report, prepared by Joseph A. Abell,

evaluated the use of the linear regression model used by AFLC to forecast

future tonnage requirements. The model evaluated in this report is the

same one presently used by AFLC/DSXR and is presented in the following

equation;

Y = PO + PIX

where: Y = historical (predicted) quarterly SDT tonnage
X = historical (programmed) quarterly flying hours
00 = the y axis intercept
P, = flying hour parameter

The objective of this research was to evaluate the linear regression

model and the data smoothing technique and determine if the model met

four requirements that Abell believed were necessary for any forecasting

model. These requirements were:

1. be verifiable,

2. be able to incorporate indicators of future trends in
operations,

3. be relatively straight-forward in its application and
interpretation,

4. be able to produce the most accurate results possible with the
information available. (1:2)

In order to properly evaluate the model, Abell determined it was

necessary to reproduce previous results achieved by the imcdpl. Abell
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used the Statistical Package for the Social Sciences (SPSS) within the

CREATE system to produce scattergrams of the data and generate the linear

regression equations and the statistics associated with the regression

variables. Abell was not able to duplicate any of the previous results

achieved by the model because the computer program used by AFLC was

flawed and produced inaccurate results. Abell pointed out that the

nonduplication of the results did not invalidate the model, but did

suggest that the computer program should be corrected (1:5-6).

Abell continued his research in order to determine the validity of

the data smoothing technique. The report indicated that the smoothing

technique removed the randomness in the data sets for tonnage and flying

hours and isolated the underlying trends between tonnage and flying

hours. It also indicated that the coefficient of correlation (r) and the

coefficient of determination (r2) for the regression equations using

smoothed data significantly increased compared to r and r2 values

computed for regression equations using nonsmoothed data. For example,

the report showed an r value for a regression equation using nonsmoothed

data as r = .04163, while the r value for the regression equation using

smoothed data increased to r = .79056. The sum of squares error (SSE)

for the regression equations using smoothed data decreased compared to

the SSE computed for regression equations using nonsmoothed data (1:11-

13).

Abell believed that if the smoothing technique was in fact isolating

the trends in the flying hour and tonnage data sets, then the increased

values of the coefficient of correlation and the coefficient of

determination computed for the regression equations utilizing smoothed

data sets were true indicators of the strength of the relationship
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between tonnage and flying hours. The stronger relationship between

tonnage and flying hours would improve the accuracy and reliability of

the forecasts (1:13). Abell proved this by comparing nonsmoothed data

forecasts with smoothed data forecasts using the mean absolute deviation

(MAD) formula and determined the smoothed data forecasts were more

accurate than the nonsmoothed forecasts (1:16-18).

Abell recommended that the regression model should be continued

based on the following reasons:

1. it is dependable and defendable,

2. it is able to incorporate the effects of past trends into
the estimate,

3. it is able to incorporate indicators of increases/decreases
of future operations into the estimate,

4. provides a measure of the probable error in the estimate,

5. provides a measure of the strength of the relationship
between tonnage movements and flying hours, the correlation
coefficient. (1:22-23)

Abell believed the smoothing technique was justifiable, but required

further evaluation. The report also recommended an investigation into

the use of other regression models such as logarithmic or multiple

regression models and the evaluation of alternative data smoothing

techniques (1:23-25).

Strom Research (1989). This research, conducted by Captain Stephen

L. Strom, was initiated as a result of concern expressed by Headquarters

Unites States Air Force, Plans and Programs Division, Directorate of

Transportation (HQ USAF/LETX) with respect to the effectiveness and

accuracy of the overseas general cargo forecasting model used by DSXR.

With the increase in budget reductions throughout the Air Force, and

especially in the transportation system, more emphasis was placed on DSXR

to make the most accurate SDT forecasts possible (25:10).
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Strom's research was limited to MAC and MSC general cargo tonnage

forecasting models for USAFE and PACAF. The research had two objectives:

1. Validate the current forecasting method used for computing
tonnage estimates to derive future SDT budget requests.

2. If the current method's validity was not supported, develop a
new forecasting model, using the same input data, that would
produce more accurate and reliable tonnage estimates. (25:10)

In order to validate the current forecasting method, Strom tested

DSXR's iterative linear regression forecasting technique by examining P1

in the simple regression equation to determine whether it changed during

the iterative process. If P1 did not change, then the data was

stationary and the iterative linear regression technique could be used.

If it changed, then the iterative approach was invalid and could not be

used (25:41). DSXR's simple regression model is;

Y = PO + PIX

where: Y = historical quarterly SDT tonnage
X = historical quarterly flying hours

PO = the y axis intercept
P, = flying hour parameter

A three step process was used to determine the stability of the

flying hour parameter:

1. The flying hour parameter, P1, for each iteration was computed.

2. The standard error (so,) for each flying hour parameter was
computed.

3. Using these standard errors, 95 percent confidence intervals
for P, were established for each iteration using the following
equation:

P1 ± t./2sO1

where: ta, 2 = the value of the two-tailed test-statistic
for a = .05 and n - 2 degrees of freedom. (25:41-42)

Strom concluded that if any of the confidence intervals did not

overlap, then the flying hour parameter changed during the iterations and
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consequently invalidated DSXR's linear regression iterative technique.

The following hypothesis test was conducted to statistically determine

whether the flying hour parameter changed during the iteration process:

Ho: P1,8 = P1 , 9 P , 40

Ha: P1, i #P1, = 8 =Pn

where: i = any one iteration conducted with
8 to 40 periods of data

n = total number of iterations conducted excluding i

Test Statistic: P, ± tat2sOI

where: t,12 = the value of the test-statistic
for a = .05 and n - 2 degrees of freedom.

Rejection Region: Reject H. if any two of the regression
iteration confidence intervals did not
overlap. (25:58-59)

Strom's research statistically invalidated the iterative linear

regression method used to predict MSC SDT tonnage for PACAF and USAFE by

showing how the flying hour parameter (Pl) had statistically changed

after iterations were conducted. The null hypothesis for each of the two

models was rejected based on a 95 percent confidence interval. This

instability in the flying hour parameter implied that the models were

invalid for predicting future tonnage requirements. Strom's research did

not statistically invalidate the models used to predict MAC SDT tonnage

for PACAF and USAFE, but did cast suspicion on the validity of the linear

regression iterative technique. Strom continued the research in order to

develop Box-Jenkins time series forecasting models (25:80-81).

The Box-Jenkins time series model was used because it can identify

patterns in historical time series data and use the patterns to make

torecasts. A computer software package (TIMES) was used to accomplish

the time series analysis, the model building and evaluation, and the
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forecasting requirements. Four steps were used in the development of the

Box-Jenkins (BJ) time series model:

1. Identification of any patterns in the time series.

2. Model specification based on these identified patterns.

3. Diagnostic tests to ensure the appropriate model is specified.

4. Hypothesis testing and forecasting. (25:63-64)

Based on the raw data, autocorrelation function (ACF), and partial

autocorrelation function (PACF) patterns, four ARIMA (autoregressive

integrated moving average) models were selected:

ARIMA (1,2,2) for MAC tonnage destined for USAFE,

Yt = Yt-2 + °2(Yt-2 - Yt-4 ) - alet-i

- a 2 et_2 + e t

ARIMA (1,1,1) for MSC tonnage destined for USAFE,

Yt = Yt-1 + ° 1 (Yt- - Yt- 2 ) - alet-1 + et

ARIMA (1,1,2) for MSC tonnage destined for PACAF,

Yt = Yt-1 + o1 (yt-l - Yt- 2 ) - a3et-3

- a4et_ 4 + et

ARIMA (0,0,1) for MAC tonnage destined for PACAF,

Yt= et - alet-, + p

where: Yt = the forecasted time series values

Yt- = historical value of the time series

oi = the AR (autoregressive) parameter at period i

ai = the MA (moving average) parameter at period i

et- = the error associated with period t - 1.

p= the mean of the time series. (25:68-70)

Eight diagnostic tests were performed on the models:
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1. The residuals were plotted and evaluated to determine
changes in the variance.

2. The residual autocorrelation function was inspected for
any significant values or spikes.

3. The Portmanteau Lack of Fit Test (Q-statistic) was evaluated
to determine how well the model fits the data.

4. The cumulative periodogram of the residuals was evaluated
to determine linearity.

5. A histogram of the residuals was reviewed to determine
normality.

6. The sum of the squared error (SSE) and the mean squared error
(MSE) were evaluated to determine whether the model was a
good predictor of the time series.

7. The Fourier Transform of the autocorrelations (Power Spectrum)
was reviewed to determine whether problems existed in the
models.

8. The Schwartz statistic (Bayesian Information Criterion (BIC))
was reviewed to assess the goodness of fit as well as penalizing
for complexity within the model. (25:45-47)

The accuracy of the BJ model forecasts was evaluated using the mean

absolute percent error (MAPE) equation and compared to the forecasts and

MAPE for the DSXR model. The BJ models for PACAF and USAFE MAC tonnage

were statistically more accurate than the DSXR model forecasts. The BJ

PACAF and USAFE MSC models failed to forecast more accurately than the

DSXR models for PACAF and USAFE MSC tonnage (25:83-86).

Strom's research conclusion recommended further research to develop

a valid forecasting model that is significantly more accurate than the

one presently used by DSXR. Strom recommended an econometric model with

multiple independent variables (25:88).

Navy and Army SDT Progrim

Navyy ST. A telephone interview was conducted with Mr. Bill Wall

(Budget Analyst) of the Navy Material Transportation Office (Service Wide
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Transportation Branch (SWT)), to determine how the Navy forecasts their

SDT requirements. The Navy's MAC and MSC requirements are manually

forecasted using a subjective method which consists of looking for trends

and seasonal fluctuations in the historical tonnage data for each channel

of traffic (51 channels for MAC, 450 - 500 channels for MSC) and

predicting a short range forecast (100 days) and a long range forecast (2

years) based on the characteristics of the historical data (a channel is

a particular cargo route with a specific point of embarkation (POE) and

debarkation (POD), i.e. Atlantic Coast (U.S.) to Europe). Once the

tonnage forecasts are established, the SDT budget requirement is

determined by using cost figures from applicable MAC and MSC regulations

(27).

Although no standard statistical procedures are used to develop the

forecasts, the data was reported to be consistent which indicates the

past tonnage requirements are a good predictor of future tonnage

requirements. Simple averages of past tonnage requirements have yielded

good results for the Navy, but there are some problems the Navy

encounters with forecasting SDT. First, it is difficult to determine in

advance the geographical area (i.e. Greenland, Mediterranean) where the

carrier groups and squadrons are going to be conducting exercises.

Without knowing the geographical area, it's impossible to forecast the

channel tonnage requirement to support the exercises. Second, the

historical data for some of the larger cargo volume channels are

disrupted (large peaks and valleys) from SDT policy changes and budget

reductions. This makes it difticult to forecast new requirements based

on past historical data which have been disrupted from these changes.
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The smaller cargo volume channels do not seem to be affected by these

changes (27).

Army SDT. A telephone interview was conducted with Mr. Robert

Saylor (Traffic Management Specialist) of the Army Materiel Command (AMC)

(Logistics Control Authority (LCA)), to determine how the Army forecasts

their SDT requirements. The Army's MAC and MSC requirements are manually

forecasted by each command using a subjective method which consists of

looking for trends and seasonal fluctuations in the historical tonnage

data for each channel of traffic. The AMC then combines the forecasts

and develops the Army's CONUS outbound, CONUS inbound, and intratheater

SDT requirements. Cost figures are used from the applicable MAC and MSC

regulations to develop the overall SDT budget (24).

The Army appears to have some problems with forecasting SDT. First,

the forecasts submitted by each of the commands are usually inaccurate.

Although no standard statistical procedure is used to develop the

forecasts, the Army is in the process of developing an automated

forecasting system using historical data and a Winter's time series

model. Second, MAC and MSC tonnages are reported by channel, but the

Army develops their forecasts by command. Tonnages reported by command

are more useful for developing forecasts (24).

The Army reported the same problems with policy changes and budget

cuts as the Navy. They also reported that simple statistical methods

such as a simple average can yield good forecasting results, but they

believe the Winter's time series model will be capable of extracting the

trend and seasonal characteristics of the past historical tonnage and

will ultimately improve their forecasting accuracy (24).
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Summary of the SDT Reports and the Army/Navy SDT

The past literature indicates the forecasting methodology used by

DSXR has been extensively evaluated by other researchers. Most of the

research evaluated the use of the flying hour program to forecast SDT and

attempted to justify its use in forecasting models or make

recommendations on how to improve the models.

The Foster Report indicated the methodology was not totally valid,

but no other method was explored for possible use. The LII report cited

rate, workload, and policy changes as the most important causes of SDT

requirement changes. This means SDT forecasting models should be capable

of modeling these changes. Grayson's report identified the problem of

overestimated programmed flying hours and the possible negative impact it

would have on SDT forecasting accuracy. Grayson believed the use of the

total flying hour variable was too much of a generalization and did not

account for particular types of aircraft. Abell's study indicated DSXR's

simple regression model should be continued, but other models should be

evaluated such as multiple regression models. Strom's research addressed

DSXR's iterative simple regression development technique and discovered

it was not always a statistically accurate technique. Strom developed

Box Jenkins time series models, but only two models out of the four that

were developed were statistically more accurate than the DSXR models.

DSXR is presently in the process of separating additional programs

from the general cargo category such as aircraft engines and

communication equipment. DSXR believes this will allow them to track the

shipment of these items separately from the general cargo category and

provide more accurate forecasts for SDT. Three of the previous

researchers (Lamb, Sarnaki, and Strom) developed different forecasting
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models in order to improve forecasting accuracy, but none of the models

have been implemented by DSXR.

DSXR's forecasting methodology is different in some aspects from the

Army and Navy forecasting methodology. For budgeting purposes, DSXR

forecasts the total MAC and total MSC tonnage requirement by geographical

area based on flying hours using simple regression models. The Army and

the Navy subjectively forecast their MAC and MSC requirements by channel

and add them together to arrive at a total MAC and MSC tonnage

requirement for funding. DSXR does subjectively alter their forecasts

produced by the regression models if the forecasted tonnage values appear

too low or high with respect to current historical levels of tonnage.

Once the tonnage forecasts are established, the tonnage forecasts are

converted into dollars for funding.

This research addressed the recommendations for improving the

forecasting models made in the prior research. Specifically, this

research examined the use of multiple regression models with other

independent variables such as military population and flying hours by the

type of aircraft. Also, previous research indicated conventional

mathematical techniques for forecasting SDT requirements have yielded

marginal results. Since other neurocomputing research has proven neural

networks can be successfully employed in applications that have yielded

poor results through conventional mathematical techniques, neural network

models were developed and evaluated for SDT forecasting accuracy. The

next section presents an introduction to the back-propagating neural

network that was used in this research.
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Neurocomputing

The artificial intelligence community has long been interested in

devaloping machines that mimic human characteristics. Expert systems and

robotics are two results of this quest. Expert systems attempt to

capture the knowledge of one or more human domain experts in a computer

program, while robotics deals with controlling the visual and tactile

aspects of robotic activity.

Neural networks are an adaptive information processing system that

mathematically develops associations between particular inputs and a

desired output. The network is given sets of example inputs (independent

variables) and desired outputs (dependent variables) and extracts a

relationship between the inputs and outputs by analyzing the input/output

pairs (13:36).

Neurocomputing is loosely based on the information processing

capability of the human brain which is composed of thousands of

biological neurons and neural connections (13:37). A biological neuron

is composed of three parts: the cell body which contains the nucleus; the

dendrites which receive the input signals and transmit them to the cell

body; and the axon which transmits the signals from the cell body and

dendrites (5:635). The neuron is the basic cellular unit of the central

nervous system (brain, spinal cord) and the peripheral nervous system

(neurons outside the central nervous system). The nervous system's major

function is internal communication and this function is accomplished by

an electrical and chemical transmission from one neuron to other neurons

(5:635-640).

A single neuron in the brain may receive signals from thousands of

other neurons by synaptic connections between its dendrites and the axons
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of other neurons, but depending on the summation of the signals, the

neuron may or may not be excited (fire) and initiate an impulse (5:640).

'Ie neurons in tne brain react to inputs baoed on how it is genetically

organized and what it has previously learned. The neural network

functions in a similar fashion. Input and output training examples are

presented to the network which, in turn, forms mappings or associations

between the inputs and outputs. The strength of a neural network comes

from its ability to associate new inputs with a particular output based

on the input/output associations it has developed through training

(13:37).

Neural Networks. Neurocomputing attempts to 'train' computer

simulated neurons to fire based on particular inputs they receive. The

computer simulated neurons are known as processing elements (Figure 1)

and consist of a small local memory and processing power (contained in

the processing node). The local memory is used to store previous

computations and a value known as an adaptive coefficient or connection

weight. Each weight determines the connection strength between

processing elements and is used to increase or decrease the input signal

from other processing elements. Weights can be negative (inhibitory,

decreases output signal from the processing element) or positive

(excitatory, increases output signal from the processing element). Each

processing element receives many different input signals, but only

transmits one output signal. This output signal is transmitted to other

processing elements and acts as the input signal to each of them. A

processing element computes output signals or values by multiplying the

input values received from other processing elements with the

corresponding connection weights and summing them together.
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Figure 1. A Neural Network Processing Element

Figure 2 shows an example of a processing element with three inputs

values and one output value. The three input values (x1 , x2, and x3) are

multiplied by their corresponding weight values (w1 , w2, and w3) and the

products are summed with a neuron bias value (w0 = +1) (the neuron bias

is added to mathematically improve the network's performance). The

processing element then modifies the weighted summation with a transfer

function which is typically the sigmoid function (13:36-38). The

equations that are used are presented below;

z = x 1 w1  'X2 W 2 + . XnWn + WO

f(z) = I / (1 + e-z)

where: z = weighted summation value with bias value
f(z) = sigmoid function
xi = input value
wi = input weight value
wo = neuron bias value (+1)
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n = the number of inputs
e = natural exponential function. (17:13-17; 28:44-45)

INPUTS WEIGHTS OUTPUT
(XI) (W)

W1 w -. 8 *.72 IUI

X1 - +.9 SUMMATION FUNCTION

X2- W - -. 5 F-.1

X3 a *.2 W3a-.9

NEURON IAS, '1

Figure 2. A Neural Network Processing Element Activation

(Example 1)

Figure 3 is another example of the same processing element, but with

three different input values. Figure 4 shows how the summation value is

transformed by the sigmoid function. The sigmoid 'squashes' the

summation value so that it ranges between 0 and 1 (28:45).

The transfer function represents the processing power of the

processing element. and is usually a nonlinear positively increasing

function. Figure 5 shows two other common nonlinear functions, the hard

limiter function and the threshold logic function (17:4).

The network is presented, in an iterative fashion, pairwise sets of

input (independent variables) and desired output values (dependent

variables) during a training process. The network produces a predicted
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output each time the input/output set is presented to the network. The

network compares the predicted output with the desired output value from

the training set and determines the error between the two values. The

network adjusts or changes the connection weights between processing

elements in a way that minimizes the error. Connection weights that

contribute the most to the error are changed first. Through this

iteration process, the network continues to reduce the error between the

predicted outputs it produces and the desired outputs until it reaches a

global minimum error (28:47-53).

INPUTS WEIGHTS OUTPUT
(XI) (WI)

X l .1 W 1 a *.8 o.08 SIQMOiD

SUMMATION FUNCTION

X2* 

W3"--.9 -. 81
X3 -.9

NEURON BIAS& * 1

Figure 3. A Neural Network Processing Element Activation
(Example 2)
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SUMMATION VALUE
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Figure 4.. Sigmoid Function

z

HARD LIMITER

fiz)

THRESHOLD LOGIC

Figure 5. Hard Limiter and Threshold Logic Function
(17:5)
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Single Layer Perceptron. The earliest implementation of

nrurncomputing was the development of a network in the late 1950's that

had the ability to recognize simple patterns that could be separated by a

single plane in a two dimensional space. This single layer network was

culled a perceptron and subsequent work by researchers continued the

experimentation and understanding of the perceptron's capabilities

(22:20-21).

The single layer perceptron is limited to deciding whether input

patterns belong to one of two classes. This is accomplished by the

mathematical computations that the processing element performs. The

processing element in the single layer receives weighted input signals

and sums them together. A threshold factor (P) is added to the sum and

is passed through a hard limiting nonlinearity to produce an output of

-1 or +1. An output of -1 would correspond to one class, while an output

of +1 would correspond to the other. A decision boundary is formed by a

hyperplane in a two dimensional space that separates the two classes into

separate half planes (17:13). Figure 6 displays the input/output

relationship of the processing element and the decision boundary.

The perceptron is initialized by setting the connection weights and

threshold values to small random numbers, usually between -1 and +1. The

perceptron is trained by presenting examples of inputs and desired

output. During this training process, the perceptron compares the output

it computed (actual output) to the desired output and adapts or corrects

the connection weights if an error exists. The rate of adaptation is

controlled by a momentum or gain term (n) that ranges between 0 and 1.

Low gain terms result in stable weight changes and an averaging of past
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input values while high gain terms cause large weight modifications for

changes in the input values.

X1

Input A X2Y outONut

X2
X2 DECISION BOUNDARY

A

AB

AB
J B

Fj X1

a

B

Figure 6. Single Layer Perceptron and Decision Boundary
(17:13)

Through the training process, the perceptron forms a decision

boundary between the two classes. This process is called perceptron

convergence. The original mathematical equations were modified to

eliminate the possibility of oscillating decision boundaries. The

modified method is called the least mean square (LMS) algorithm which

minimizes the error between the desired output and the perceptron's

actual output. The LMS algorithm follows a gradient descent heuristic by

changing connection weights that maximize the change in error. The

connection weights from inputs that contribute to the greatest error

undergo the largest adaptation or correction. Other modifications
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included replacing the hard limiting nonlinearity function with a linear

or threshold logic noniinearity and updating the connection weights

during every trial depending on the error between the desired output and

the actual output (17:14).

The first equation of the following two equations shows the

mathematical formula used to calculate the actual output of the

processing element. The second equation displays how the weights are

adapted using the LMS method.

y(t) = f[lwi(t)xi(t) +

wi(t+l) = wi(t) + n[d(t) - y(t)1xi(t)

where: y(t) = output

xi(t) input values where i = 1.. .n inputs

wi(t) = connection weights for each input

P= threshold value

f = a linear or threshold logic nonlinearity function

d(t) = desired output (0 or +1)

n = gain term. (17:13)

In 1969, Minsky and Papert published a discussion of the perceptron

that proved the single layer perceptron was incapable of performing

complex pattern recognition problems. Soon after its publication,

interest in perceptron research declined until 1986, when Rummelhart and

others developed a training algorithm for the multi-layered perceptron.

Papert and Minsky exposed the limitations of the perceptron by

demonstrating a number of problems the perceptron could not solve. The

perceptron convergence procedure is not an appropriate method to use when

two classes cannot be separated by a hyperplane. The problem used by
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Papert and Minsky to demonstrate this was the exclusive-OR problem (Table

4). In this problem, the two classes are disjoint and cannot be

separated by a single hyperplane. Figure 7 shows how the two classes

cannot be separated by a single hyperplane.

Table 4

Exclusive OR Problem (17:14)

Input values Output values

XI X2 Y Class

0 0 0 B

1 0 1 A

0 i 1 A

1 1 0 B

X2 DECISION BOUNDARY

A Y B

17
Y _B A

01

Figure 7. The Exclusive-OR Decision Region (17:14)
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Training algorithms were later developed for multi-layered networks.

Multi-layered networks have much more processing power than the single-

layer networks and can learn complicated multi-dimensional associations

between input patterns and output values. The development of the

backpropagating training algorithm enabled the multi-layer perceptron to

overcome the limitations of the single-layer perceptron (17:15-17).

Multi-Layer Perceptron. The multi-layer perceptron contains at

least one additional layer of processing elements between the input and

output processing elements. The additional layers are called hidden

layers because they are not directly connected to inputs or outputs.

Each hidden layer processing element adds capability for the network to

recognize associations between the inputs and outputs. Usually, a

network will not contain more than two hidden layers since most problems

can be solved with one or two layers. The output signal from one

processing element is the input to other processing elements in

subsequent layers and each element affects the performance of the entire

network. The connections between processing elements can be fully

connected or randomly connected (13:38). Figure 8 displays a multi-

layer perceptron with 8 inputs and one output with two hidden layers

consisting of 12 processing elements in the first layer and 5 processing

elements in the second layer (17:15). Unlike the single-layer

perceptron, the multi-layer perceptron can form bounded or unbounded

convex decision regions. A bounded convex region means a particular

class is contained in a particular finite region while an unbounded

convex region contains a class in an infinite region. The convex regions

are constructed by the intersections of half plane regions which are
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Figure 8. A Multi-Layer Perceptron

formed by the processing elements in the first hidden layer. Each of the

processing elements in the first layer acts like a single perceptron and

forms a half plane region bounded by a hyperplane. The decision region

for a particular class becomes the intersection of all the half planes

that are formed by each of the processing elements. The complexity of

the decision regions increases as the number of additional layers and

processing elements increase. The number of sides for a convex region

are limited to the number of procession elements in the first hidden

layer. Figure 9 displays the decision region formed by a multi-layer

perceptron to solve the exclusive-OR problem (17:15-16).

The shapes of the decision regions can change depending on the

types of transfer functions used by the processing elements. When

sigmoidal nonlinearities are used instead of hardlimiting nonlinearities,
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the decision boundaries are curved instead of straight line segments.

Networks form these decision regions by using the backpropagation

training algorithm (17:16).

X1

Input Y V Output

X2
X2

A B

0 A

0 1

Figure 9. Multi-Layer -3rceptron Exclusive-OR Decision
Region (17:.4)

Backpropagation. The backpropagation training algorithm

incrementally reduces the global error between the desired output and the

actual output. It is a generalization of the LMS algorithm and uses a

iterative gradient technique to minimize the global error of the network.

The error is minimized by adapting or correcting the connection weights

in the hidden layers. This is accomplished by 'backpropagating' the

error from the output processing elements back through the processing

elements in the hidden layers. The gradient aspect of the technique
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ensures outputs from hidden layer processing elements that contributed to

the greatest amount of error are modified the most (12:1-20; 17:17).

The initiation of the backpropagation training algorithm is similar

to the initiation of the LMS training algorithm for the single-layer

perceptron. The initial connection weights and threshold values are set

to small random numbers between -1 and +1. The network is presented

input and desired output values during the development process and the

connection weights between the processing elements in the hidden layers

are modified to minimize the error between the actual output and the

desired output. Once an acceptable error is achieved, the development

process is terminated.

Starting at the output layer and working back to the previous

layers, the weights are adjusted as follows;

Wijft+l ) = Wijt) + n6jx 1i

where: wijl t) = connection weight from an input node i node j at time t
n = gain term
j = error term for node j

x i = output from node i. (17:17)

The error terms are calculated differently depending on where the

node is in the network. For output nodes, the error term is determined

by the following equation;

6j = yj(1-y,)(dj - yj)

where: 6i = error term for output node j
yj = actual output for output node j
dj = desired output for output node j. (17:17)

For hidden nodes, the error term is;

6i = X'i(l-X'i)76kWik

where: 6b = error term for hidden node j
x i = output from node j
6k = error term for a forward node k

wik = connection weight from node j to forward node k. (17:17)
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Types of Networks. Neural network models are specified in three

ways: network topology, processing element characteristics, and network

training rules. The network topology determines the mapping of

connections between processing elements and influences the information

processing capability of the network by controlling what data each

processing element receives. The processing element characteristics are

the type of transfer function and mathematical formula used to combine

the input values and connection weights. Network training rules

determine how and when the connection weights are adapted or changed in

order to improve the performance of the network. Network topology,

processing element characteristics, and network training rules determine

the type of network (17:4).

There are six important types of networks (shown in Table 5) that

can be classified by binary or continuous valued inputs and supervised or

unsupervised training. Binary inputs are zero and one while continuous

valued inputs are usually a number between zero and one.

Table 5

Types of Neural Networks (17:6)

Binary input Continuous Valued Input

Supervised: Supervised:

Hopfield Net Perceptron

Hamming Net Multi-layer Perceptron

Unsupervised: Unsupervised:

Carpenter/Grossberg Kohonen Self-Organizing
Classifier Feature Maps
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Under supervised training, the network is presented training data

with input and desired output values. The network compares its actual

output with the desired output and corrects itself by making changes to

the connection weights for each of the processing elements. The process

of presenting the training data is iterative and the network gradually

corrects itself according to its training rules (13:38; 17:7).

Unsupervised training allows the network to make changes by itself.

The network is presented training data with only the input values. The

network organizes itself internally by responding to input values with

different processing elements. In other words, the processing elements

group themselves to respond to a particular set of input values or a

closely related set of input values (13:38; 17:7).

Neural Network Applications. Neural networks applications are

grouped into two categories, pattern recognition and generalization. In

pattern recognition applications, the networks are developed to extract

patterns from distorted inputs or inputs with added background noise

(28:2-3). This application is used for speech and handwritten character

recognition because there are many slightly distorted ways to pronounce

the same word or write the same letter.

The generalization category of neural network applications consists

of two types of problems, classification and prediction. Networks used

in these applications are presented new inputs which are distinct from

the inputs used in network training. For classification applications,

the network groups the new input with other similar types of inputs and

generates a particular output for that group. The output response

signifies the group into which the new input was classified.
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Networks for prediction applications are trained to recognize

underlying patterns in a particular data set. When a new input is

presented, the network generates an output based on the underlying data

patterns that were previously learned (7:443).

The remainder of this section presents two neural network

forecasting applications. The first application compares the forecasting

accuracy of several neural network models to regression models in

predicting ratings for corporate bonds. The second application compares

the forecasting accuracy of neural network models to several standard

time series forecasting techniques.

Neural Network ForecastingApplications

Neural Network vs. Regression (Bond Rating Problem). In this

research, Soumitra Dutta used a neural network to predict the ratings for

corporate bonds. In the past, the use of conventional mathematical

modeling techniques to solve this problem have produced poor results.

This was a generalization classification application of a neural network

in a domain lacking a well defined theory or model. The underlying

functional form or mathematical model that determines a corporate bond

rating (dependent variable) from various independent variables is not

well defined or known. Statistical techniques require an assumption or

correlation concerning the functional form relating independent variables

and dependent variables. The reason for utilizing a neural network for

this type of problem is that the network does not need to know the

apriori functional form. The network extracts the underlying data

patterns from input-output training pairs. This research indicated that
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the neural networks performed better than the multiple regression models

(7:443-446).

The researchers selected ten financial variables (independent

variables) to predict bond rating (dependent variables). Different

neural network and regression models were developed using ten variables

and six variables as independent variables. Forty seven sets of bond

ratings and financial values were randomly selected. Thirty sets were

used to train the neural networks and develop the regression models,

while the other seventeen were used to test the performance of both

models (7:446-448).

The Berkeley Interactive Statistical Package was used to develop the

regression coefficients and t-statistics. A neural network simulator was

used to develop 2 layered (input and output layer) and 3 layered

(I hidden layer with a varying number of nodes) network configurations.

The output responses to the test data for the neural network and

regression models were compared to determine which model was more

accurate (7:448).

The results of the tests indicated the neural networks

significantly outpreformed the regression models in predicting bond

rating. The success rate for predicting bond rating was 88.3%

(2 layered, 10 variable neural network) compared to 64.7% for the ten

variable regression model. The 3 layered neural networks had a smaller

total squared error for the learning data than -.t 2 layered network, but

there was no significant difference in the predictive ability using the

test data. When the neural network models were in error, the magnitude

of the error was one rating while the regression models were often in

error by several ratings (7:448-450).
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Application of Neural Networks in Time Series Forecasting. The

researchers in this study (Brian Huffman and Thomas Hoffmann) explored

the use of neural networks in time series forecasting. The researchers

compared the forecasting accuracy of neural networks with other

conventional techniques such as moving averages, simple exponential

smoothing, Winter's exponential smoothing, and naive or random walk

approach. Two types of time series were examined, generating functions

with and without noise and real-world data. Forecasting accuracy was

evaluated on five criteria:

1. Average algebraic error

2. Standard deviation of algebraic error

3. Minimum error

4. Maximum error

5. Average Absolute error. (14:162)

The time series that were used in the research are listed below.

1. Sine wave function without slope (SinOO, SinlO, Sin30). The

average value of the sine wave was 100 and was represented by the

equation:

F(t) = 100 + 50(sin(t*30/360)) + E

where,

F(t) = function's value during period t

E = uniformly distributed random error. (14:162)

2. Sine wave function with slope. A noiseless slope time series was

added to sine wave function SinOO to form the following equation:

F(t) = 200 + .8(t) + 50(sin(t*30/360)) + E

where,
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F(t) = function's value during period t

E = uniformly distributed random error. (14:162)

3. The actual data represented the number of international airline

passengers during a high growth decade. The researchers believed this

empirical data were more complex since it had an upward trend and

seasonal characteristics with no known generating parameters (14:163).

The researchers wanted to put the simple moving average and simple

exponential smoothing technique on equal footing with the neural networks

as much as possible for comparison purposes. The simple moving average

used N periods where N represented the number of inputs to the neural

network.

The simple exponential formula used an alpha value of 2/(N+l) where

N was the number of months used for inputs to the neural network model.

Winter's model (alpha, beta, and gamma value of .15) was the most data

intensive model and required a 12 month period to develop the seasonal

constants. Four different neural networks were used with 3, 4, 5, and 9

input nodes and one output node for each model. Each of the forecasting

models made 192 predictions and the results were compared using the above

listed criteria (14:163).

The results of the sine wave and empirical data experiments

indicated the neural networks were generally superior to the other

methods, but under certain conditions other methods did outperform the

networks on some of the criteria. The Winter's model also appeared to do

very well, but the researchers believed precomputing the seasonal factors

for the model may have biased the results in its favor. The researchers

noted that more than three inputs and more than a year's worth of data

may actually decrease the performance of the network. They also stated
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that the networks seemed to forecast with greater accuracy, but that the

predictive ability of the networks tended to be biased either positively

or negatively (14:164).

Chapter Summary

This chapter presented previous SDT reports and research that have

had an impact on forecasting future SDT requirements. This research was

based on several of +he further research suggestions from previous

reports and research. The second part of this chapter examined the Navy

and Army methodologies for forecasting SDT requirements. Both the Army

and Navy relied on subjective evaluations, but noted that simple

techniqu's such as the simple average of historical requirements produced

adequate results. Part three of this chapter was a background on

neurocomputing and the backpropagating neural network which was used in

this research. The fourth part of this chapter presented previous

research on the use of neural networks in two different types of

forecasting applications. One report compared the forecasting accuracy

of neural networks to the forecasting accuracy of multiple regression

models. The second report compared the forecasting accuracy of neural

networks to the forecasting accuracy of several conventional time series

forecasting models. Overall, the neural networks produced more accurate

forecasts compared to the other models.
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III. Methodology

This chapter presents the methodology used to accomplish the

research objectives and is divided into five parts. The methodology

begins with the collection of the flying hour data by aircraft type and

the military population data. The second part is a data analysis

methodology section which consists of plot evaluations, trend and

seasonal analysis, business cycle analysis, and a time series analysis.

DSXR's simple regression model validation and forecasting evaluation

methodology is presented in part three. Part four presents the multiple

regression development, validation and forecasting evaluation

methodology. Finally, part five is the neural network development and

forecasting evaluation methodology.

Collection of the Data

One objective of this research was to develop multiple regression

and neural network models using aircraft flying hours by type of aircraft

and military population variables in order to increase SDT forecasting

accuracy. Presently, DSXR receives a product of the G033B system

(Aerospace Vehicle Inventory Status and Utilization Reporting System

(AVISURS)) for updating their historical data base of quarterly total

flying hours by geographical area. DSXR also receives the programmed

flying hours by quarter and uses this information to determine future

tonnage requirements.

The G033B system can produce reports showing flying hours

categorized by mission design (MD) or mission design series (MDS) for

each geographical area (4). For this research, PACAF and USAFE flying

hours by MD from FY 1985/1 to 1988/2 (14 quarters) were used to develop
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the PACAF and USAFE MSC multiple regression and neural network models.

Six quarters (FY 1988/3 to 1989/4) were used to test forecasting

accuracy. Flying hours by MD from FY 1985/3 to 1988/4 (14 quarters) were

used to develop the PACAF and USAFE MAC multiple regression and neural

network models. Five quarters (FY 1989/1 to 1990/1) were used to test

forecasting accuracy.

PACAF and USAFE military population data were obtained from AFLC

Director of Military Personnel, Systems Division (DPMSD), and are

categorized by yearly officer and airman manpower strength for each

geographical area. Manpower strength is programmed for future outyears

and DSXR currently receives this information for forecasting SDT for the

subsistence program.

Data Analysis Methodology

Plots. Various plots of PACAF and USAFE MSC tonnage, MAC tonnage,

flying hours, and military population variables were developed so that

relationships could be graphically identified. Many of the plots were

developed from data in the last appendix in this report (Appendix Z)

which presents the PACAF and USAFE MAC, MSC and total flying hour data

from FY 1978, quarter 1 to FY 1990, quarter 1.

Trend and Seasonal Analysis. PACAF and USAFE MSC and MAC quarterly

tonnage and total quarterly flying hours were analyzed using Gardner's

trend and seasonal analysis methodology. Gardner's methodology is based

on comparing the variance of the actual data set with the variance of the

difference between same quarters for each year, the first difference

between each quarter, and the second difference between each quarter.
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The data set with the lowest variance determines the strength of the

trend/seasonal characteristics in the actual data set (9:44-50).

Business Cycle Analysis. The PACAF and USAFE MSC quarterly tonnage

were analyzed using Gardner's business cycle pressure analysis

methodology (MAC tonnage data were not analyzed). The pressure analysis

methodology was used in this research to determine the peaks, troughs,

turning points and other changes that have occurred in each of the

MSC tonnage data sets (10:40-43). Pressure values are determined by

comparing data from a particular time peric with data from a previous

time period (time periods that are compared have equal lengths). The

pressure values are ratios of the data for time period (t) to the data

for a previous time period (t-x) (where x is a pre-determined number of

previous time periods). A pressure value above 100% indicates the

present MSC tonnage is greater than the past year's tonnage for the same

period (a value below 100% means the opposite is true).

For this research, 1/4 and 4/4 pressure plots were developed. A 1/4

pressure plot shows the comparison of the quarterly tonnage with the

quarterly tonnage for the previous year. A 4/4 pressure plot shows the

comparison of the sum of four quarters of quarterly tonnage with the same

sum of tonnage for the previous year.

Pattern Identification. PACAF and USAFE MSC and MAC tonnage

autocorrelations were computed using a statistics computer program (SAS,

proc ARIMA) to determine whether there were any patterns (autoregressive

(AR), moving average (MA)) in the data sets. The autocorrelation

function was used to identify MA aspects and data stationarity while the

partial autocorrelation function was used to identify AR aspects. The Q-
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statistic was computed to test whether a data set was white noise

(random).

DSXR Simple Regression Model Validation and Forecasting Evaluation

The DSXR simple regression models were replicated in this research

(SAS, proc REG) in order to identify model specification problems. The

models were statistically validated and evaluated (forecasting accuracy)

with the following tests:

1. The Two Tailed T-test.

HO: p1 = 0

Ha: P1 does not equal 0

Test Statistic: t

Rejection Region: t < -t.025 or t > t.025

where, t.0 25 is based on n - 2 df.

The two tailed t-test proves whether the model is significant at the

.05 level of confidence. The rejection of the null hypothesis indicates

the independent variable contributes information for the prediction of

the tonnage (dependent) variable.

2. R2 Value Evaluation. The R2 value (coefficient of

determination) can be used to determine the predictive power of the

model. The R2 value indicates the model's fit to the data. This test

measures the proportionate reduction of total variation or error

associated with the use of the independent variables (21:89-90). A model

with a coefficient of determination of approximately .70 or greater is

normally considered an effective model for predicting the dependent

variable, but R2 values can be artificially forced to take a high value

by adding more independent variables to the model even though the model
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contributes no useful information for predicting the dependent variable

(18:581). The R2 value can be determined from the following equation;

R2 = 1 - (SSE / SSY)

where: SSE = the unexplained sample variation

SSY = the total sample variation.

3. Residual Analysis. Plots of the residuals versus the predicted

values were used to determine whether the residuals were randomly

distributed (no heteroscedasticity problems). Plots of the residuals

versus the independent variables were examined for random distribution

(no problem with the assumption of linearity between tonnage and the

independent variables). The Wilk Shapiro Test for Normality was used to

determine whether the residuals were normally distributed. A properly

specified model will have normally distributed residuals.

Ho: The residual distribution function is a normal

distribution function.

Ha: The residual distribution function is not a normal

distribution function.

Test Statistic: W

Rejection Region: W < W.05

where, a = .05, n = number of observations.

The rejection of the null hypothesis proves the residuals are not

normally distributed and the model is not properly specified.

4. Outlier Detection. The studentized residuals were computed so

that residuals falling beyond 3 standard deviations could be identified.

5. Durbin Watson (DW) Test. This test was used to test for the

existence of first order autocorrelation (23:158-161).
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Ho: The residuals are not autocorrelated.

Ha: The residuals are autocorrelated.

Test Statistic: DW

Rejection Region:

4 - d, < DW < 4 (negative autocorrelation)

0 < DW < d, (positive autocorrelation)

Acceptance (null hypothesis) Region:

2 < DW < 4 - du (no autocorrelation, negative test)

du < DW < 2 (no autocorrelation, positive test)

Indeterminate Results:

4 - du < DW < 4 - d,

d, < DW < d,

where d, and du, are based on k independent parameters and n

observations.

The acceptance or rejection of the null hypothesis indicates whether

a positive or negative autocorrelation problem is evident in the

residuals.

6. Forecasting Accuracy. The forecasting accuracy of the models

was evaluated in three ways, mean absolute error (MAE), minimum absolute

error, and maximum absolute error. Out of the three, the MAE value was

the most critical value for evaluating forecasting accuracy. The

following equation was used to calculate the MAE value;

MAE = (.E1 + E2: + . + E) / n

where:

:Ei{= absolute error between the predicted and actual value

at time period i

n = number of periods in the forecast series.
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The MAE values for the PACAF and USAFE MSC models were calculated

with six quarters (FY 1988/3 to 1989/4, n = 6) while the MAE values for

the PACAF and USAFE MAC models were calculated with five quarters (FY

1989/1 to 1990/1, n = 5).

Multiple Regression Model Development, Validation,

and Forecasting Evaluation

The multiple variable regression model is an extension of the simple

linear regression model. There are two reasons for using it:

1. To reduce the random error denoted by E along with its
variance denoted by s2. This reduces the prediction and
confidence intervals and increases the precision of the
intervals.

2. To eliminate bias by including independent variables that
contribute to the prediction of the dependent variable.
(29:71)

Before using the multiple variable regression models, four

assumptions must be met concerning the random error E:

1. The mean of the probability distribution for E must be
equal to zero.

2. The variance of the probability distribution of E is constant

for all given sets of independent variables.

3. The probability distribution of E is normal.

4. The error associated with the a y value (dependent variable)
is independent of any other y values. (18:501,558)

It is very easy to graphically determine how well a simple

regression model fits the data by plotting a two dimensional

representation of the predicted and actual dependent values against the

independent variable (15:133). When more than one independent variable

is used, the data is represented as a hypersurface in a k + I dimensional

space where k is the number of independent variables (15:133). In this
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case, the problem of graphically determining how well the model fits the

data becomes more difficult.

In this research, the PACAF and USAFE data sets each had

approximately 18 different types of aircraft flying hours and two

military population variables. In order to reduce the number of

variables into a manageable data set, an initial selection of aircraft

flying hour variables was made based on whether the aircraft was a major

weapon system (i.e. F-16, A-10, F-4, F-15 etc.) and/or the aircraft flew

a significant percentage of the total flying hours (i.e. C-130, C-135, B-

52, etc.). Once this initial selection was made, the computer program

SAS (proc reg) was ut'd to develop statistically significant first order

multiple regression models at the 95% confidence level. If the residual

analysis revealed any nonlinearities between the dependent and

independent variables, higher order terms were added to improve the fit

of the model. The first order general representation of the model is

shown in the following equation;

Y = PO + PxI + P2x2 + P 3X3 + • • + Pixi + E

where: y = tonnage (airlift or sealift)

x1 through xi = quarterly flying hours variables by type of

aircraft or officer/airman military population

variables.

The models were statistically validated and evaluated (forecasting

accuracy) using the same six steps used to validate and evaluate the DSXR

simple regression models, but the F-test was substituted for the two

tailed t-test and a multicollinearity test was added.

1. The analysis of variance F-test.

H: 1  P = 2 = P3 = . k . 0
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Ha: At least one Pi does not equal 0

Test Statistic: F

Rejection Region: F > F,

where,

a = .05

k = the number of independent variables

n = the number of observations in the data set

v1  k

V2 = n - (k + 1)

The global usefulness of the model was tested using the analysis of

variance F test. The value of F must be greater than the value of Fa in

order to reject H. and accept Ha and conclude that the model is useful

for predicting the dependent variable (18:578).

2. Multicollinearity. Before developing the models, the Pearson's

coefficient of correlation (r) was computed for the independent variables

for each data set so that highly correlated (r > +.5, r < -.5) could be

identified (3:206-207). Once the models were developed, the variance

inflation factors (VIF) were computed to determine whether a problem of

multicollinearity existed between the variables.

Ho: Variables xI, x2, x3 ... xk are more closely related to

the dependent variable than each other.

Ha: Variables xI, x., x3, ... Xk are more closely related to

each other than the dependent variable.

Tt S L t. 1i

VIF (x1), VIF (x2), VIF (x3), . . . VIF (Xk)

Rejection Region: VIF (xi) > 1 / (1 - R2)

where,
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i = onp of the independent variables

k = the number of independent variables.

The VIF for each independent variable is subjected to the test and

VIF's that exceed 1 / (1 - R2) indicate the model has a problem with

multicollinearity (8:80).

Neural Network Model Development and Forecasting Evaluation

The objective of the neural network models was the same as the

multiple regression models, to forecast future PACAF and USAFE SDT

requirements (measured in airlift and sealift tonnage). To solve this

problem, two different techniques were used to develop the neural

networks. One technique was based on developing the networks with data

(independent and dependent variables) similar to the data (14 quarters)

used by the multiple regression models (in order for the networks to

process the data, the data were transformed so that it ranged between 0

and 1). An iterative trial and error approach was used to find the best

network architecture (training algorithm and the number of inputs,

outputs, and hidden layers) that could achieve a statistically

significant level of learning convergence (learning convergence is the

capacity of a network to correctly associate input values to a desired

output value and for this research, network learning convergence was

measured in terms of R2 values). The networks (labeled as multivariable

networks) were developed by presenting the 14 quarters of transformed

independent and dependent variable data as training examples (PACAF and

USAFE MSC FY 1985/1 to 1988/2, PACAF and USAFE MAC FY 1985/3 to 1988/4)

and tonnage forecasts were computed by presenting new independent
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variable data (6 quarters for PACAF and USAFE MSC (1988/3 to 1989/4), 5

quarters for PACAF and USAFE MAC (FY 1989/1 to 1990/1)).

In addition to the multivariable network development technique, a

time series development technique was used for the PACAF and USAFE MAC

data sets. This technique consisted of presenting twenty sets of four

quarters (five years) of MAC tonnage at times t-3, t-2, t-1, and t as

network input values and one forecast quarter at time t+1 as the network

output value. Forecasting accuracy was evaluated by forecasting for the

same five quarter period (FY 1989/i to 1990/1).

The type of network used in this research was a multi-layer back-

propagation network using the Neural Ware Professional II computer

program (neural network simulation program). All the networks in this

research used the generalized delta rule algorithm and the input and

output layers used a linear transfer function while the two hidden layers

used the sigmoid transfer function. Six steps were followed in the

development of the networks:

1. Collect the data and accomplish data transformations.

2. Determine the input and output variables and construct
the network.

3. Train the network with sample data.

4. Analyze the network for training inefficiencies and
pathological conditions.

5. Validate the model.

6. Predict future values by presenting new data.

A large part of the research was devoted to experimenting with

different arrangements of nodes, layers, interconnections, inputs,

outputs, training algorithms, and weights for each network. After the

networks were constructed, training began by presenting sample data to
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the networks. Steps 2, 3, and 4 were iterative steps in order to find the

best possible networks.

In step 4, the networks were analyzed to determine the effectiveness

of the nodes and to identify inefficient training methods. Networks with

nodes that increased without bound were terminated since no additional

training could achieve learning convergence. Networks with other

pathological conditions such as nodes with weights of zero, nodes that

had the same weight or opposite weight of another node and nodes that

continued to fire regardless of the input were also terminated (26:59-

61).

In step 5, R2 values were used to validate the network's pattern

recognition capability. A network with a low R2 value (below .5)

indicated the network was not properly configured for the problem or the

network did not receive enough training iterations. The networks in this

research made rapid progress (large increases in the R' value) with 1000

to 2000 training iterations, but progress usually slowed down with

increased training iterations. To prevent undertraining or overtraining,

network training was terminated once the R2 value became relatively

stable. The Durbin-Watson statistic was also calculated for each network

output.

Finally, in step 6, the networks were presented new input data to

make forecasts. Like the DSXR models and the multiple regression models,

forecasting accuracy was evaluated with the MAE, minimum absolute error,

and maximum absolute error and was compared to the multiple regression

and DSXR model forecasts.
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Methodo ogv Summary

This chapter presented the steps used to conduct this research. In

order to develop new forecasting models, the research began with the

collection of additional independent variable data. The total flying

hour parameter used by DSXR for PACAF and USAFE general cargo tonnage was

restructured into separate flying hour parameters for each type of

aircraft. Other independent variables (officer and airman population)

were also added to the model.

The DSXR simple regression models were replicated using the SAS

computer program and validated with five statistical diagnostic tests.

Forecasting accuracy was evaluated by measuring the MAE and minimum and

maximum absolute errors. Multiple regression models were developed using

the SAS computer program and were subjected to similar diagnostic tests

and forecasting accuracy evaluation as the DSXR models.

Neural network models were developed using the Neural Ware

Professional II computer program. Multivariable and time series networks

were constructed and evaluated for pattern recognition capability and

forecasting accuracy.

Finally, the DSXR model, the multiple regression model, and the

neural network model were compared to determine the best forecasting

model.
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IV. MSC SDT Forecasting Results and Analysis

This chapter is divided into four parts. The first part examines

the current DSXR regression models used to forecast sealift tonnage

requirements to PACAF and USAFE. The second part is an analysis of the

PACAF and USAFE data sets. Part three presents the development and

results of the multiple regression models and part four is the

development and results of the multivariable neural network models.

DSXR Simple Regression Model Validation and Forecasting Evaluation

DSXR PACAF MSC Model. Appendix A is the complete SAS output of the

DSXR simple regression model used to forecast for the six quarter period

from fiscal year 1988/3 to 1989/4. The dependent variable is PACAF

sealift tonnage and the independent variable is the total PACAF aircraft

flying hours. This model was developed by using 34 quarters of data

(1980/1 to 1988/2). Table 6 displays a portion of the SAS output. The

following diagnostic output showed the following:

1. Two Tailed Test.

Ho: P, = 0

Ha: P1 does not equal 0

Test Statistic: t = 3.084

Rejection Region: t.025 < -2.042, t. 0 2 5 > 2.042

where,

a = .05

df = 32.

The two tailed test indicates the model is significant at the .05

level of confidence (the flying hour (independent) variable contributes

information for the prediction of the tonnage (dependent) variable).
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Table 6

DSXR PACAF MSC Model Analysis of Variance

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 1 339797123.86 339797123.86 9.511 0.0042
ERROR 32 1143223160 35725723.76
C TOTAL 33 1483020284

ROOT MSE 5977.1 R-SQUARE 0.2291
DEP MEAN 41325.85 ADJ R-SQ 0.2050
C.V. 14.46334

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER=O PROB > :T.

INTERCEP 1 -3382.12 14532.78074 -0.233 0.8175
FH 1 1.13325080 0.36745715 3.084 0.0042

2. R2 Value. Although the two tailed test indicates the model is

useful, the R2 value is low (.2291) which signifies a lack of fit of the

model to the data.

3. Residual Analysis. A plot of the residuals versus the predicted

values (Appendix A, Figure 57) appears to show a problem with

heteroscedasticity. The plot is funnel shaped with increasing residual

variance as the predicted values increase. The plot of the residuals

versus flying hours (Appendix A, Figure 58) does not appear to show a

problem with the assumption of linearity between tonnage and flying hours

(the residuals seem to be randomly distributed). The Wilk Shapiro Test

for Normality was used to determine whether the residuals were normally

distributed (see Appendix A).

Ho: The residual distribution function is a normal distribution

function.
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Ha: The residual distribution function is not a normal distribution

function.

Test Statistic: W = .97273

Rejection Region: W < W.05 = .933

where,

a = .05, n = 34.

The Wilk Shapiro Test indicates there is insufficient evidence to

reject the null hypothesis and accept the alternative hypothesis based on

a 95% confidence interval.

4. Outlier Detection. The plot of the studentized residual values

versus flying hours (Appendix A, Figure 59) shows all the residuals

falling within 3 standard deviations from the mean of zero and all but

one residual (observation 23, student residual = 2.73) falling within 2

ste.dard deviations. Based on this finding, no outliers are present in

the data set.

5. Durbin Watson (DW) Test. This test was used , test for the

existence of first order autocorrelation.

H,: The residuals are not positively autoc'rrelated.

H.: The residuals are positively autocorrelated.

Test Statistic: DW = .655

Rejection Region: 0 < DW < d, (positive autocorrelation)

Acceptance Region: du, < DW < 2 (no autocorrelation, positive test)

wherc,'

d, = 1.39

d,, = 1.51

n 34

k 1.
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The null hypothesis is rejected and the alternative hypothesis is

accepted with a 95% level of confidence based on the fact that the DW

statistic (.655) is lower than d, (1.39). The residuals are positively

autocorrelated and the plot of the residuals versus N (Appendix A, Figure

60) (N = automatic observation counter that creates a sequential period

indicator) shows how the residuals start out negative, become positive,

and then become negative again (cyclical residual effect).

6. Forecasting Accuracy. The DSXR model was used to forecast for

the six quarter period from fiscal year (FY) 1988/3 to 1989/4. Since the

R2 value of the model was lw, a comparison was made between the DSXR

model and a simple 34 quarter (1980/1 to 1988/2) and 12 quarter (1985/3

to 1988/2) tonnage average. The averages were used as forecasts for the

six quarter forecasting period. Table 7 shows the results of the model

forecasts and the 34 and 12 quarter average tonnage forecasts.

According to the forecasting results, the 12 quarter average is a

slightly more accurate forecasting model compared to the DSXR model.

This is not surprising for three reasons. First, the DSXR model is a

statistically useful model, but the low R2 valt!e and a high MSE value

indicate the flying hour variable does not explain a large amount of the

tonnage variance. Second, the DSXR model was developed from a large data

base (34 quarters of data (1980/1 to 1988/2)) containing old data as well

as recent data. Despite the numerous weapon system changes that have

taken place since 1980, one has to make the unreasonable assumption that

the relationship between tonnage and flying hours remained constant for

the entire 8 year time period and will continue to remain constant in the

future. Third, the 12 quarter average was developed from a small data
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base (1985/3 to 1988/2) and represents current sealift tonnage

requirements.

The 34 quarter average did not forecast as well the other models,

but it did achieve the minimum error for one forecast. This model had

the same problem as the regression model, too much old data was used in

developing the forecasts.

Table 7

DSXR PACAF MSC Model Forecasting Accuracy

Actual DSXR Model 12 Qtr Average 34 Qtr Average
FY/Qt Tonnage Forecasts Forecasts Forecasts

1988/3 55113 43902 43526 41326
1988/4 42250 40698 43526 41326
1989/1 43079 42714 43526 41326
1989/2 45086 44169 43526 41326
1989/3 44009 44614 43526 41326
1989/4 41224 38077 43526 41326

MAE: 2966 2943 3835
Minimum Error: 365 447 102
Maximum Error: 11211 11587 13787

7. Summary of Analysis. Overall, the model was useful based on the

results of the two tailed t-test with a 95% confidence level, but the low

R2 value indicated a need for model improvement. The residual analysis

revealed a problem with heteroscedasticity and the Durbin-Watson test

proved the tonnage data was positively autocorrelated (two violations of

the probability distribution assumptions of E) (18:500-501).

The simple 12 quarter average had comparable forecasting accuracy to

the DSXR regression model. The forecasting capability of the DSXR

regression model was degraded because the model was developed from a 34

quarter data base which contained old, irrelevant data. The relationship
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between tonnage and flying hours does not remain constant during the 34

quarter period. Strom's research supports this finding. His research

proved DSXR's iterative procedure for finding a regression model was

invalid because the P coefficients statistically changed as the number of

quarters were reduced in developing the model. This means the

relationship between tonnage and flying hours changes with respect to

time.

DSXR USAFE MSC Model. Appendix B contains the complete SAS output

of the DSXR simple regression model used to forecast for the six quarter

period from fiscal year 1988/3 to 1989/4. The dependent variable is

USAFE sealift tonnage and the independent variable is the total USAFE

aircraft flying hours. This model was also developed by using 34

quarters of data (1980/1 to 1988/2). Table 8 displays a portion of the

SAS output. The following diagnostic output showed the following:

1. Two Tailed Test.

Ho: P1 = 0

Ha: P, does not equal 0

Test Statistic: t = 2.434

Rejection Region: t.0 5 < -2.042, t.02 5 > 2.042

where,

a : .05

df : 32.

The two tailed test indicates the model is significant at the .05

level of confidence (the flying hour (independent) variable contributes

information for the prediction of the tonnage (dependent) variable).
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Table 8

DSXR USAFE MSC Model Analysis of Variance

sUM OF MEAN
SOURCE DF SQUARE SU F VALUE PROB>F

MODEL 1 1200722483 1200722483 5.926 0.0207
ERROR 32 6484081098 202627534.30
C TOTAL 33 7684803580

ROOT MSE 14234.73 R-SQUARE 0.1562
DEP MEAN 70816.56 ADJ R-SQ 0.1299
C.V. 20.10085

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER=O PROB > :T:

INTERCEP 1 5192.00148 27068.71949 0.192 0.8491
FH 1 0.89342350 0.36701624 2.434 0.0207

2. R2 Value. Although the two tailed test indicates the model is

useful, the R2 value is low (.1562) which signifies a lack of fit ot the

model to the data.

3. Residual Analysis. The plot of the residuals versus the

predicted values (Appendix B, Figure 61) does not appear to be randomly

distributed (increasing variance) which indicates a heteroscedasticity

problem. The plot of studentized residuals versus flying hours shows how

most of the residuals are negative and fall within 0 and -1.3 standard

deviations while the positive residuals fall within 0 and 2.1 standard

deviations with a grouping of residuals near 2 standard deviations. The

plot of the residuals versus flying hours (Appendix B, Figure 62) does

not appear to be randomly distributed and looks similar to the plot of

the residuals versus the predicted values. This means the assumption of

linearitv between tonnage and flying hours may not be correct (fitting a
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straight line through curvilinear data). The Wilk Shapiro Test for

Normality was used to determine whether the residuals were normally

distributed (Appendix B).

H0 : The residual distribution function is a normal distribution

function.

Ha: The residual distribution function is not a normal distribution

function.

Test Statistic: W = .907887

Rejection Region: W < W.05 = .933

where,

a = .05

n = 34.

The Wilk Shapiro Test proves the residual distribution function is

not normal (reject the null hypothesis and accept the alternative

hypothesis based on a 95% confidence interval). This confirms the

interpretation of the residual plots.

4. Outlier Detection. The plot of the studentized values versus

the flying hours (Appendix B, Figure 63) shows all the residuals falling

within 3 standard deviations from the mean of zero and all but one

residual (observation 21 (1985/1), student residual = 2.1062) failing

within 2 standard deviations. This is similar to the DSXR PACAF MSC

model which had one residual falling outside 2 standard deviations at the

same time period (observation 23, (1985/3)). Based on this finding, no

outliers are present in the data set.

5. Durbin Watson (DW) Test. This test was used to test for the

existence of first order autocorrelation. The statistics are displayed

in Appendix B.
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H.: The residuals are not positively autocorrelated.

Ha: The residuals are positively autocorrelated.

Test Statistic: DW = .644

Rejection Region: 0 < DW < d, (positive autocorrelation)

Acceptance Region: d, < DW < 2 (no autocorrelation, positive test)

where,

d, = 1.39

d u = 1.51

n =34

k =1.

The null hypothesis is rejected and the alternative hypothesis is

accepted with a 95% level of confidence based on the fact that the DW

statistic (.644) is lower than d, (1.39). The residuals are positively

autocorrelated and the plot of the residuals versus N (Appendix B, Figure

64) (N = automatic observation counter that creates a sequential period

indicator) shows how the residuals start out negative, become positive,

and then become negative again (cyclical effect).

6. Forecasting Accuracy. The model was used to forecast for the

six quarter period from fiscal year (FY) 1988/3 to 1989/4. Since the R2

value of the model was low, a comparison was made between the DSXR model

and a simple 34 quarter (1980/1 to 1988/2) and 12 quarter (1985/3 to

1988/2) tonnage average. The averages were used as forecasts for the six

quarter forecasting period. Table 9 shows the results of the DSXR USAFE

MSC regression model forecasts and the 34 and 12 quarter average tonnage

forecasts.

Like the DSXR PACAF MSC model, the 12 quarter average is a slightly

more accurate forecasting model than the DSXR model. The forecasting
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accuracy explanation for the DSXR PACAF MSC model also applies to this

model.

Table 9

DSXR USAFE MSC Model Forecasting Accuracy

Actual DSXR Model 12 Qtr Average 34 Qtr Average
FY/Qt Tonnage Forecasts Forecasts Forecasts

1988/3 81479 71601 71714 70817
1988/4 76619 71977 71714 70817
1989/1 73847 66066 71714 70817
1989/2 63853 71427 71714 70817
1989/3 74806 -81697 71714 70817
1989/4 88613 79357 71714 70817

MAE: 7670 7443 8041
Minimum Error: 4641 2133 3030
Maximum Error: 9877 16899 17796

7. Summary of Analysis. The results of this model were very

similar to the analysis results of the DSXR PACAF MSC model. Both models

were useful based on the results of the two tailed t-test with a 95%

confidence level, but the low R2 value indicated a need for model

improvement. The residual analysis for both models revealed a problem

with heteroscedasticity and the Durbin-Watson test indicated the tonnage

data was positively autocorrelated (two violations of the probability

distribution assumptions of E (18:500-501). Unlike the PACAF MSC model

results, the Wilk-Shapiro test for normality statistically proved the

residuals were not normally distributed. The results of the forecasting

evaluation between the DSXR USAFE MSC model and the 12 and 34 quarter

averages were similar to the results of the DSXR PACAF MSC model.
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Data Analysis

Plots. Figure 10 is a plot of PACAF MSC tonnage versus PACAF flying

hours. The relationship between tonnage and flying hours appears to be

fairly linear when flying hours are below 40,000 hours. Above 40,000

flying hours, the data points are widely dispersed and the linear

relationship is no longer present. Out of the 42 flying hour data points

that were plotted, 26 of them are below 40,000 hours. Twenty-four of the

twenty-six sub-40,000 flying hour data points occurred from 1978/1 to

1983/4. After 1983, the linear relationship between flying hours and

tonnage is no longer apparent.
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Figure 10. PACAF MSC Tonnage versus PACAF Flying Hours
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The plot of the PACAF quarterly sealift tonnage (Figure 11) reveals

how sealift requirements have changed with time. Two large peaks are

evident in fiscal years 1983 and 1985.

Figure 12 is a plot of USAFE MSC tonnage versus USAFE flying hours.

The relationship between USAFE tonnage and flying hours is similar to the

relationship between PACAF tonnage and flying hours. In this case, the

relationship is fairly linear when flying hours are below 65,000 hours.

Above 65,000 flying hours, the data points are widely dispersed and the

linear relationship is no longer present.

The quarterly USAFE MSC tonnage plot (Figure 13) shows similar peaks

to the quarterly PACAF MSC tonnage plot (Figure 11). Unlike the PACAF

tonnage, the USAFE tonnage has one continuous peak from 1983 to 1985

instead of two peaks.
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Interviews conducted with the DSXR personnel indicated the tonnage

peaks for PACAF and USAFE could be the result of high growth and spending

periods for the Air Force (19). Figures 14 and 15 are plots of tonnage

and flying hours for PACAF and USAFE. Both plots show an increasing

trend in flying hours and tonnage requirements, but the flying hour data

do not exhibit the same large peaks that are evident with the tonnage

data. It appears that factors other than flying hours have caused the

large historical increases in sealift tonnage requirements.

Two other factors that could have caused the PACAF and USAFE sealift

tonnage peaks are the aircraft funding levels and the overseas military

populations. Figure 16 is a bar chart of the 3010 procurement dollars

for aircraft. The chart shows large procurement dollar increases

occurring from 1982 to 1985.
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Figure 17 is a plot of PACAF officer and airman populations which

shows manpower increases from 1982 to 1986. Figure 18 is a plot of USAFE

officer and airman populations which shows officer manpower increases

from 1982 to 1985 and an airman manpower increase in 1984.
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Trend and Seasonal Analysis. PACAF and USAFE MSC tonnage and flying

hours were analyzed using Gardner's trend and seasonal analysis

methodology (Appendix C). According to Gardner's methodology, the

variance of the actual data is compared to the variance of the difference

between same quarters for each year (DBQ), the first difference between

quarters (DBD-1), and the second difference between each quarter (DBD-2)

(9:44-50). The data with the lowest variance indicates whether trend

and/or seasonal characteristics exist. The MSC results are summarized in

Table 10.

PACAF and USAFE MSC tonnage exhibited seasonality and a moderate

trend since the variance of the tirst difference between quarters (DBD-

1) was the lowest for" each data set. PACAF and USAFE flying hours

exhibited seasonality (the variance of the difference between same
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quarters for each year (DBQ) was lowest), but the slight trend that was

evident in the plots (Figures 14 and 15) was not detected.

Table 10

MSC Trend and Seasonal Analysis

PACAF MSC TONNAGE

Actual DBQ DBQ-1 DBQ-2
Variance: 49027789 51731495 44276024 1.02E+08
Index: 100% 106% 90% 2091
Trend: Moderate
Seasonal: Yes

USAFE MSC TONNAGE

Actual DBQ DBQ-1 DBQ-2
Variance: 2.84E+08 1.69E+08 1.45E+08 3.56E+08
Index: 1001 601 511 1261
Trend: Moderate
Seasonal: Yes

Pattern Identification. Appendix D is the SAS output of the

autocorrelation analysis for the PACAF MSC data set (FY 1978/1 to

1988/2). The Q-statistic indicates this series is not white noise (the

data set has auturegressive (AR) or moving average (MA) aspects) since

the value (Q = 75.17) is greater than the chi square value (X = 12.5916

with 6 df and 951 confidence level). The autocorrelations remain

positive and significantly different from zero to r12 which means the

series is not stationary. The autocorrelation function and partial

autocorrelation function have large spikes at lag one (r, = .74251) which

would indicate an AR(1) and/or MA(1) aspect. The autocorrelation

function also shows a significant spike at lag two (r2 = .62825)

signifying a possible MA(2) aspect.

Appendix D also displays the SAS autocorrelation analysis output for

the USAFE MSC data set (FY 1978/1 to 1988/2). The results of this
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analysis are similar to the results for the PACAF MSC data set. The Q-

statistic indicates this series is not white noise (Q = 129.46 is greater

than the chi square value (X2 = 12.5916 with 6 af and 95% confidence

level). The series is not stationary since the autocorrelations remain

positive and significantly different from zero to rg. The

autocorrelation function and partial autocorrelation function have large

spikes at lag one (r1 = .85238) and lag two (r2 = .79221) which would

indicate an AR(1 or 2) and/or MA(1 or 2) aspect.

Business Cycie Analybis. Gardner's business cycle pressure analysis

methodology was used to determine the peaks, troughs, and turning points

in the sealift tonnage (Appendix E). Pressures are values that show how

the sealift tonnage for a quarter compares with the sealift tonnage for

the same quarter a year earlier (10:40-42). The pressure values are

ratios of the comparisons and are converted into percentages. A value

above 100% means the present sealift tonnage is greater than the past

year's sealift tonnage for the same period (a value below 1001 means the

present sealift tonnage is less than the past year's sealift tonnage for

the same period).

The 1/4 pressure plot (Figure 19) shows the comparison of sealift

tonnage with the same quarter for the previous year while the 4/4

pressure plot (Figure 20) shows the comparison of the sum of four

quarters of sealift tonnage with the same sum for the previous year.

Both plots show the peaks and troughs, but the turning points are more

evident in the 4/4 pressure plot. Since 1987, sealift tonnage has been

increasing and indicates the formation of another peak.
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Figure 21 displays a plot of the ratio of sealift to flying hours

for USAFE and PACAF. The plot shows how the PACAF and USAFE sealift

tonnage per flying hour ratios have changed over an eleven year time

period. The ratios are fairly similar and are consistent for particular

time periods. From 1978 to 1982, the ratio is below 1.0 and averages

approximately .9. During the peak sealift periods (1982 to 1985), the

ratio increased above 1.0. It appears PACAF has historically required

(on the average) more sealift tonnage per flying hour than USAFE.
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Figure 21. PACAF and USAFE Sealift/Flying Hour Ratios

Multiple Rege~ession Models

The objective of the multivariable regression models was to

determine whether the breakout of the total flying hour variable into

specific aircraft types and the addition of military population variables
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(Appendix F) contributed to increasing PACAF and USAFE sealift

forecasting accuracy.

Figure 22 is a plot of PACAF flying hours versus fiscal year/quarter

for four major types of aircraft (A-1O, F-4, F-16, and F-15). This plot

shows how the flying hours changed with respect to time. In FY 1982, the

F-16 was a new weapon system and by FY 1985 the F-16 inventory was 59

aircraft which flew approximately 4500 total flying hours each quarter.

By FY 1989, the F-16 inventory increased to 128 and the aircraft flew

approximately 10,000 hours each quarter. Contrary to the F-16, the F-4

is a weapon system that is reaching the end of its life cycle. In FY

1981, the F-4 inventory was 112 aircraft and total flying hours were

approximately 6,000 hours each quarter. By the end of FY 1989, the

inventory decreased to 70 and the aircraft flew approximately 4,000

hours. Other aircraft such as the T-39, A-37, T-33, OV-10, and the E-3

have been introduced or phased out at different time periods from FY 1982

to FY 1989.

Figure 23 is a plot of USAFE flying hours versus fiscal year/quarter

for the same four major types of aircraft (A-1O, F-4, F-16, and F-15).

Like the PACAF flying hours, this plot shows how the USAFE flying hours

changed with respect to time. In the beginning of FY 1982, there were no

F-16's, but by the end of FY 1989 the F-16 inventory was 242 and the

aircraft flew over 16,000 total hours each quarter. In FY 1982, the F-4

inventory was over 200 and the aircraft flew over 12,000 hours each

quarter. By the end of FY 1989, the inventory decreased to 52 and the

aircraft flew approximately 4,000 hours. Like the PACAF flying hours,

other aircraft such as the C-140, C-20, and the F-5 have flown at

different time periods from FY 1982 to FY 1989.
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Data. In order to model the current relationship between flying

hours, military populations and sealift tonnage, fourteen quarters (three

and a half years) of data (quarter 1, FY 1985 to quarter 2, FY 1988) were

used to develop the regression models. Similar to the DSXR models, six

quarters (quarter 3, FY 1988, quarter 4, FY 1989) were withheld to

measure forecasting accuracy. The R2, F-test, and Durbin Watson values

were used to assess the fit of the models and the mean absolute error

(MAE), minimum absolute error, and maximum absolute error were used to

measure their forecasting accuracy.

PACAF MSC Multiple Regression Model Development. Eighteen different

types of aircraft defined by MD (Mission Design) comprise the PACAF

flying hour program (Figure 24). Appendix G shows the quarterly flying

hours and inventory for each aircraft from FY 1985 to FY 1989. Seven

aircraft types were selected as independent variables and used to develop

the multiple regression model. The seven aircraft types account for

approximately 85% of the total PACAF flying hours (Figure 24). Airman

(AMN) and officer (OFF) military population independent variables were

also selected and used to develop the multiple regression model

(Figure 24).

Out of the nine initially selected independent variables (seven

aircraft, two military population variables), six were eliminated because

of multicollinearity problems or statistically non-significant t-values

(Figure 24). The resulting three variable model was statistically

significant at the 95% confidence level (Appendix H). The three variable

model was;

y = 385572 + 13.82x, - 1.94x2 - 61.52x 3

where: y = quarterly sealift tonnage
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x, = quarterly A-10 flying hours

x. = quarterly F-16 flying hours

x3 = quarterly officer population.
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Figure 24. PACAF MSC Independent Variable Selection

Model Validation and Forecasting Evaluation. Appendix H is

the complete SAS output of the multiple regression (three variable)

model. Table 11 displays a portion of the SAS output. The following

diagnostic output showed the following:

1. The analysis of variance F-test.

HO: PI = P2 = P3 = 0

Ha: At least one Pi does not equal 0
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Test Statistic: F = 6.153

Rejection Region: F > F.0 s = 3.71

where,

a .05

V= 3

V2  10

The F test proves the model is significant at the .05 level of

confidence (the independent variables contribute information for the

prediction of the tonnage (dependent) variable).

2. R2 Value. The model has a moderately good fit with a RI value

higher than the DSXR model (.65 compared to .23 for the DSXR model).

Table 11

PACAF MSC Multiple Regression Model Analysis of Variance

Sum of Mean
Source DF Sqluares Square F Value Prob>F

Model 3 364567520.74 121522506.91 6.153 0.0122
Error 10 197486140.19 19748614.019
C Total 13 562053660.93

Root MSE 4443.94127 R-square 0.6486
Dep Mean 44264.92857 Adj R-sq 0.5432
C.V. 10.03942

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > :T:

INTERCEP 1 385572 125758.88080 3.066 0.0119
A1O 1 13.819258 9.02533356 1.531 0.1567
OFF 1 -61.515186 20.19108244 -3.047 0.0123
F16 1 -1.944066 0.86970203 -2.235 0.0494

3. Residual Analysis. The plot of the residuals versus the

predicted values (Appendix H, Figure 65) appears to be randomly
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distributed and shows no heteroscedasticity problem. The plots of the

residuals versus each of the independent variables (A-I0 and F-16)

(Appendix H, Figures 66 and 67) also appear to be randomly distributed

and show no problem with the assumption of linearity between tonnage and

each of the aircraft independent variables. The plot of residuals versus

officer manpower independent variable (Appendix H, Figures 68) shows a

slight curvature which indicates the possible need for a second order

term. The Wilk Shapiro Test for Normality was used to determine whether

the residuals were normally distributed.

H,: The residual distribution function is a normal distribution

function.

HA: The residual distribution function is not a normal distribution

function.

Test Statistic: W = .940673

Rejection Region: W < W.0 5 = .874

where,

a = .05, n = 14.

The Wilk Shapiro Test indicates there is insufficient evidence to

reject the null hypothesis and accept the alternative hy]pothesis based on

a 95% confidence interval.

4. Multicollinearity. This model contains two variables (F-16 and

OFF) which are negatively correlated (r = -.61) (Appendix I). The

variance inflation factors were computed to determine whether a problem

of multicollinearity existed between the variables.

H,: Variables xI, x,, and x, are more closely related to

the dependent variable than each other.
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H.: Variables x,, x2, ard x3 are more closely related to

each o-Lher than the dependent variable.

Test Statistic: VIF = 1.09 (x1 )

VIF = 1.04 (x2)

VIF = 1.07 (x3)

Rejection Region: VIF > 1 / (1 - R2 ) = 2.86.

The results prove the independent variables are more clo.ely related

to the dependent variable than to each other.

5. Outlier Detection. The output of the studentized residuals

(Appendix H) shows all the residuals falling within 2 standard deviations

except for two residuals (observation 1 and 3) falling at approximatelv 2

standard deviations. Based on this finding, no outliers are present in

the data set.

6. Durbin Watson (DW) Test. This test was used to test for the

existence of first order autocorrelation.

H,: The residuals are not positively autocorrelated.

H.: The residuals are positively autocorrelated.

Test Statistic: DW = 1.386

Rejection Region: 0 < DW < d, (positive autocorrelation)

Acceptance Region: du < DW < 2 (no autocorrelation, positive test)

where,

d, = .82

du = 1.75

k= 3

n 14.

There is insufficient evidence to reject the null hypothesis and

accept the alternative hypothesis based on a 95% level of confidence.
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The plot of the residuals versus N (Appendix B, Figure 69) (N = automatic

observation counter that creates a sequent-al period indicator) appears

to be randomly distributed.

7. Forecasting Ac-uiracy. The multiple regression model was used to

forecast for the six quarter period from fiscal year (FY) 1988/3 to

1989/4. Table 12 shows the results of the multiple regression model

forecasts compared to the DSXR PACAF MSC model and the 12 quarter average

tonnage forecasts.

The multiple regression model overestimated on four of the six

forecasts, but achieved the lowest maximum absolute error compared to the

other models. Figure 25 is a plot of the DSXR forecasts compared to the

multiple regression forecasts which shows the overestimations by the

multiple regression model in the last three quarters.

Table 12

PACAF MSC Multiple Regression Model Forecasting Accuracy

Multiple
Actual DSXR Model 12 Qtr Average Regression

F L tr Tonnage Forecasts Forecasts Forecasts

1988/3 55113 43902 43526 50977
1988/4 42250 40698 43526 44943
1989/1 43079 42714 43526 40265
1989/2 45086 44169 43526 52728
1989/3 44009 44614 43526 47772
1989/4 41224 38077 43526 46229

MAE: 2966 2943 4342
Minimum Error: 365 447 2693
Maximum Error: 11211 11587 7642

Rsquare: .23 na .65
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8. Summary of Analysis. The multiple regression model was

developed from nine independent variables, but the resulting model only

had three independent variables. Although the model only had three

variables, the three variables were highly positively correlated

(r > +.5) and negatively correlated (r < -.5) with several of the other

variables that were not included in the model (Table 13) (Appendix 1).

Overall, the model was a useful based on the results of the F-test (95%

confidence level) and the residual analysis revealed no problems with

heteroscedasticity, multicollinearity and autocorrelation.

The relationship between tonnage and officer manpower may not be

linear based on the results ot the residual analysis. A second order

(squared) officer manpower variable (SOFF) was added to the model to
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Table 13

PACAF MSC Multiple Regression Model Independent Variable Correlations

Positively Negatively
Independent Correlated Correlated
Variable Variables Variables

A-10 F-15, F-4 (none)

F-16 AMN C-130, C-135

OFF C-130 AMN

improve fit, but the F-16 variable was dropped because the variable was

not statistically significant. The resulting model (Appendix H) had an

improved fit (R2 = .70) (Appendix H, Figure 70) compared to the first

order model, but it did not have improved forecasting capability (MAE =

8761). The resulting second order model was;

y = -32409859 + 12.18210xi + 11035x 3 - .938747x2 3

where: y = quarterly sealift tonnage

x, = quarterly A-10 flying hours

X3 = quarterly officer population.

According to the forecasting results, the simple 12 quarter tonnage

average and the DSXR regressinn model forecasted with greater accuracy

than the multiple regression model. The multiple regression model

suffered from an extrapolation problem because the officer manpower

variable decreased to 5727 (79 personnel) in 1989 which represented the

lowest level in 20 quarters. The forecasts for FY 1989/2 through 1989/4

were extrapolations since the officer manpower data for FY 1989/2 through

1989/4 was not contained in the sample data set that was used to develop

the model. The F-16 variable data for FY 1989/2 was also not contained

in the sample data set. This explains the relatively large
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overestimations in FY 1989/2 through 1989/4. The extrapolation problem

was amplified with the second order model because there were two officer

variables contained in the model.

USAFE MSC Multiple Regression Model Development. Eighteen different

types of aircraft defined by MD (Mission Design) comprise the USAFE

flying hour program (Figure 26). Appendix J shows the quarterly flying

hours and inventory for each aircraft from FY 1985 to FY 1989. Like the

PACAF model, seven aircraft types and the airman (AMN) and officer (OFF)

military population data (Appendix F) were initially selected as

independent variables and used to develop the multiple regression model.

The seven aircraft types account for approximately 87% of the total USAFE

flying hours (Figure 26).

Out of the nine initially selected independent variables (seven

aircraft, two military population variables), six were eliminated because

of multicollinearity problems or statistically non-significant t-values

(Figure 26). The resulting three variable model was statistically

significant at the 95% confidence level (Appendix K). The three variable

model was;

y = 630601 + 4.46x, - 59.98x 2 + 2.49x3

where: y = quarterly sealift tonnage

x, = quarterly C-130 flying hours

X2 = quarterly officer population

X3 = quarterly F-4 flying hours.
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Figure 26. USAFE MSC Independent Variable Selection

Model Validation and Forecasting Evaluation. Appendix K is

the complete SAS output of the multiple regression model. Table 14

displays a portion of the SAS output. The following diagnostic output

showed the following:

1. The analysis of variance F-test.

Ha: P1 = P2 = P3 = 0

Ha: At least one Pi does not equal 0

Test Statistic: F = 7.136

Rejection Region: F > F.05 = 3.71

where,

a = .05
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v= 3

V2 = 10.

The F test proves the model is significant at the .05 level of

confidence and indicates the independent variables contribute information

for the prediction of the tonnage (dependent) variable.

Table 14

USAFE MSC Multiple Regression Model Analysis of Variance

Sum of Mean
Source DF Squares Squar6 F Value Prob>F

Model 3 915845924.65 305281974.88 7.136 0.0076
Error 10 427834146.85 42783414.685
C Total 13 1343680071.5

Rout MSE 6540.90320 R-square 0.6816
Dep Mean 73417.50000 Adj R-sq 0.5861
C.V. 8.90919

Parameter Estimates
Parameter Standard T for HO:

Variable DF Estimate Error Parameter=O Prob > :T:

INTERCEP 1 630601 175849.60077 3.586 0.0050
C130 1 4.464226 1.93861574 2.303 0.0440
F4 1 2.478257 0.68166009 3.636 0.0046
OFF 1 -59.980187 17.29779539 -3.468 0.0060

2. R2 Value. The model has a moderately good fit with an R2 value

higher than the DSXR model (.68 compared to .16 for the DSXR model).

3. Residual Analysis. The plot of the residuals versus the

predicted values (Appendix K, Figure 71) appears to be randomly

distributed and shows no heteroscedasticity problem. The plots of the

residuals versus each of the independent variables (C-130 and F-4)

(Appendix K, Figures 72 and 73) also appear to be randomly distributed

and show no problem with the assumption of linearity between tonnage and
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each of the independent variables. Like the PACAF MSC model, the plot of

residuals versus officer manpower (OFF) (Appendix K, Figure 74) appears

to have a slight curvature. The Wilk Shapiro Test for Normality was used

to determine whether the residuals were normally distributed (Appendix

K).

Ho: The residual distribution function is a normal distribution

function.

Ha: The residual distribution function is not a normal distribution

function.

Test Statistic: W = .951712

Rejection Region: W < W 05 = .874

where,

a = .05

n = 14.

The Wilk Shapiro Test indicates there is insufficient evidence to

reject the null hypothesis and accept the alternative hypothesis based on

a 95% confidence interval.

4. Multicollinearity. This model contains two variables which are

correlated, F-4 flying hours and officer population (r = .65) (Appendix

L). The variance inflation factors were computed to determine whether a

problem of multicollinearity existed between the variables.

Ho: Variables xI, X2 , and x3 are more closely related to the

dependent variable than each other.

Ha: Variables xI, x2, and x3 are more closely related to each

other than the dependent variable.

Test Statistic: VIF = 1.04 (xi)

VIF = 1.20 (x2)
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VIF = 1.61 (x3)

Rejection Region: VIF > 1 / (I - R2) = 3.14.

The results prove that the independent variables are more closely

related to the dependent variable than to each other.

5. Outlier Detection. The output of the studentized residuals

(Appendix K) shows all the residuals falling within 2 standard

deviations. Based on this finding, no outliers are present in the data

set.

6. Durbin Watson (DW) Test. This test was used to test for the

existence of first order autocorrelation.

Ho: The residuals are not negatively autocorrelated.

Ha: The residuals are negatively autocorrelated.

Test Statistic: DW = 2.123

Rejection Region: 4 - d, < DW < 4 (negative autocorrelation)

Acceptance Region: 2 < DW < 4 - du (no autocorrelation, neg.test)

where,

d, = .82

d, = 1.75

k= 3

n= 14.

The test rejects the alternative hypothesis and accepts the null

hypothesis based on a 95% level of confidence. The plot of the residuals

versus N (Appendix K, Figure 75) (N = automatic observation counter that

creates a sequential period indicator) is randomly distributed.

7. Forecasting Accuracy. The multiple regression model was used

to forecast for the six quarter period from fiscal year (FY) 1988/3 to

1989/4. Table 15 shows the results of the multiple regression model
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forecasts compared to the DSXR USAFE MSC model and the 12 quarter average

tonnage forecasts.

Table 15

USAFE MSC Multiple Regression Model Forecasting Accuracy

Multiple
Actual DSXR Model 12 Qtr Average Regression

FY/Qtr Tonnage Forecasts Forecasts Forecasts

1988/3 81479 71601 71714 80827
1988/4 76619 71977 71714 77635
1989/1 73847 66066 71714 76831
1989/2 63853 71427 71714 68757
1989/3 74806 81697 71714 75914
1989/4 88613 79357 71714 74597

MAE: 7670 7443 4113
Minimum Error: 4641 2133 652
Maximum Error: 9877 16899 P4016

Rsquare: .16 na .68

The results of the forecasts show the multiple regression model with

the lowest MAE and minimum absolute error compared to the other models.

Figure 27 shows the multiple regression model producing more accurate

forecasts for five of the six forecasts compared to the DSXR model.

8. Summary of Analysis. The USAFE MSC multiple regression model

was developed in a similar manner to the PACAF MSC multivariable

regression model. Both were developed from nine independent variables

with the resulting models only having three statistically significant

independent variables that were highly positively correlated (r > .5) and

negatively correlated (r < -.5) with several of the other variables

(Table 16) (Appendix L) that were not included in the model. Overall,

the model was useful based on the results of the F-test (95% confidence

level) and the residual analysis revealed no problems with

heteroscedasticity and autocorrelation.
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The relationship between tonnage and officer manpower may not be

linear based on the results of the residual analysis. A second order

(squared) officer manpower variable (SOFF) was added to the model to

improve fit (Appendix K, Figure 76). The resulting model (Appendix K)

had an improved fit (R2 = .75) compared to the first order model, but it

did not have improved forecasting capability (MAE = 5110). The

resulting second order model was;

y = -30448299 + 4.58x i + 6050.50x2 - .30x'2 + 2.71x 3

where: y = quarterly sealift tonnage

x, = quarterly C-130 flying hours

X 2 = quarterly officer population

X 3 = quarterly F-4 flying hours.

90000
88000
86000
84000

782000
80000

z78000
76000-

74000
72000 -

70000 -S68ooo00
660001
64000-
62000

6000088/53 88/4 89/1 89/2 89/3 89/41

FISCAL YEAR,/UAPTER

A CTUAL TONNAGE F3 OSXP MODEL - MULTIUAP. PEG.

Figure 27. DSXR and Multiple Regression USAFE MSC Forecasts
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Table 16

USAFE MSC Multiple Regression Model Independent Variable Correlations

Positively Negatively
Independent Correlated Correlated
Variable Variables Variables

C-130 (none) (none)

F-4 C-135, AMN F-16

OFF (none) F-16

According to the forecasting results, the multiple regression model

achieved greater forecasting accuracy than the DSXR USAFE MSC model and

the 12 quarter tonnage average. The multiple regression model contained

a negative coefficient for the officer population variable which was

similar to the PACAF MSC multiple regression model. The other two

variables (C-130 and F-4 flying hours) had positive coefficients which

were contrary to the negative coefficient for the F-16 variable in the

PACAF MSC multiple regression model.

Neural Networks

The neural network forecasting models were developed and used in

this research to determine whether they could produce more accurate

forecasts. Neural networks are capable of recognizing and extracting

patterns from data and are applicable to this type of problem.

Data. Similar to the regression models, fourteen quarters of data

(1985/1 to 1988/2) were used to develop the networks, but the data

(Appendix F, G, and J) were transformed so that the networks could

process the data. The transformation involved converting the data so

that it ranged between 0 and 1. Appendix M and N display the
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transformation equations and the transformed data for the PACAF and USAFE

flying hours and tonnages.

PACAF MSC Networks. Unlike the regression models, networks do not

need to be specified a priori and multicollinearity is not a problem for

the network. For this research, two network models were developed. One

network (full multivariable network model) used all nine variables that

were initially selected as independent variables (seven aircraft, two

military population variables), and the other network (reduced

multivariable network model) used the three variables from the multiple

regression model (two aircraft variables, one population variable)

(Figure 24).

The full multivariable network model (Figure 28) consisted of nine

inputs (xi through x9 in Table 17) and one output (y) with two hidden

layers consisting of fourteen processing elements in the first layer and

five processing elements in the second layer. The reduced multivariable

network model (Figure 29) consisted of three inputs (xj through x- in

Table 17) and one output (y) with two hidden layers consisting of eight

processing elements in the first layer and four processing elements in

the second layer. Some experimentation was required to find the optimal

number of processing elements, but the first hidden layer typically

contains more processing elements than inputs. Increasing the number of

processing elements increases the processing capability of the network

and increases the chances for the network to find the correct solution.
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Table 17

PACAF MSC Network Independent Variables

Output
y = quarterly sealift tonnage

Inputs
x, = quarterly A-1O flying hours

X2 = quarterly F-16 flying hours

X3 = quarterly officer population

x, = quarterly C-130 flying hours

x5 = quarterly C-135 flying hours

x6 = quarterly F-4 flying hours

X7 = quarterly F-15 flying hours

x8 = quarterly B-52 flying hours

xQ = quarterly airman population.

OUTPUT Y

HIDDEN

LAYER 0

2

HIDDEN
LAYER

1

X1 X2 X3 X4 X5 X@ X7 X8 X9

INPUTS

Figure 28. MSC Full Multivariable Network Model
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Figure 29. MSC Reduced Multivariable Network Model

Network Development. The number of training iterations used to

develop a network affects the network's performance in terms of pattern

recognition (R2 value) and forecasting ability (MAE value). Figure 30 is

a plot of the R2 and MAE values with respect to the number of training

iterations (full multivariable network). As the number of training

iterations increase, the network continues to minimize the global error

between the input and output values and as a consequencc the R2 value

increases. The network makes rapid progress from 500 to 1500 training

iterations, but after 1500 iterations the network's progress slows down

(small increases in the R1 value). Since the R2 value began to plateau

at approximately .65, the training was terminated at 4000 iterations and

the network was evaluated.
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The MAE values of the forecasts usually start out high, but in this

case the MAE values are the lowest between 500 and 1000 training

iterations. From 1 to 1000 training iterations, the network is forming

mathematical relationships between the inputs and output and the network

forecasts resemble a simple average of the actual tonnages. This

explains the initial low MAE values because the forecast period (FY

1988/3 to FY 1989/4) could be predicted very accurately with a simple 12

quarter tonnage average. After 1000 training ice'ations, the MAE values

begin to increase and fluctuate between 2300 and 2500.
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Figure 30. PACAF MSC Full Multivariable Network Model
Training Iterations

Figure 31 is a plot of the R2 and MAE values with respect to the

number of training iterations tor the reduced multivariable network.
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After 2000 iterations, the network begins to plateau at an R2 value

between .6 and .65. Like the full multivariable network, the training

was terminated at 4000 iterations and the network was then evaluated.
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Figure 31. PACAF MSC Reduced Multivariable Network Model
Training Iterations

Forecasting Evaluation. Table 18 compares the forecasting

accuracy of the two network models with the DSXR model and the multiple

(three variable) regression model (Appendix 0 is a complete output of the

PACAF MSC full and reduced network models). Overall, the full

multivariable network model with 4000 training iterations achieved the

lowest MAE and the smallest minimum and maximum absolute error. The

reduced multivariable network with 4000 training iterations (which used

the same three variables as the multiple regression) performed similarly

to the multiple regression model and appears to sufter from the same
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extrapolation problems and subsequent overestimations in FY 1989/2 to FY

1989/4. The additional six variables used in the full network did not

significantly contribute to increasing the R2 value, but did contribute

to improving forecasting accuracy. Figure 32 is a plot of the network

forecasts which graphically shows the forecasting accuracy of the full

network model and the overestimations of the reduced model.

Table 18

PACAF MSC Multivariable Network Forecasting Accuracy

Multiple Full Reduced
Actual DSXR Model Regression Network Network

FY/Qtr Tgnage Forecasts Forecasts Forecasts Forecasts
88/3 55113 43902 50977 52321 52512
88/4 42250 40698 44943 46438 44522
89/1 43079 42714 40265 38324 39790
89/2 45086 44169 52728 45486 54536
89/3 44009 44614 47772 43804 48378
89/4 41224 38077 46229 39175 45988

MAE: 2966 4342 2398 4457
Minimum Error: 365 2693 205 2272
Maximum Error: 11211 7642 4755 9450

Rsquare: .23 .65 .67 .64

USAFE MSC Networks. Like the PACAF MSC models, two USAFE MSC

network models were developed (full multivariable network and reduced

multivariable network). The full multivariable network model used all

nine variables that were initially selected as independent variables (x,

through xq in Table 19) and the reduced multivariable network model used

the three variables from the multiple regression model (xj through x3 in

Table 19). The same network configurations that were used for the PACAF

MSC models were used for the USAFE models (Figures 28 and 29).
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Figure 32. PACAF MSC Full and Reduced Multivariable
Network Forecasts

Table 19

USAFE MSC Network Independent Variables

Output
y = quarterly sealift tonnage

Inputs
x, = quarterly C-130 flying hours

X2 = quarterly F-4 flying hours

x3 = quarterly officer population

X4 = quarterly C-135 flying hours

x5 = quarterly F-Ill flying hours

X6 = quarterly F-16 flying hours

x. = quarterly F-15 flying hours

x. = quarterly A-1O flying hours

xg = quarterly airman population.

106



Network Development. Figure 33 is a plot of the R2 and MAE

values with respect to the number of training iterations (full

multivariable network). Similar to the PACAF MSC full multivariable

network, this network makes rapid progress from 1000 to 1500 training
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Figure 33. USAFE MSC Full Multivariable Network Model
Training Iterations

iterations, but after 1500 iterations the network's progress slows down

(small increases in the R2 value). The MAE value of the forecasts starts

out high, achieves a minimum at 1500 training iterations, and then begins

to increase as the number of training iterations increase. The network

continues to reduce the error between input and output values as the

number of training iterations increase based on the higher R2 values, but

forecasting accuracy is lost based on the higher MAE values. Since the

R2 value began to plateau at .75, the training was terminated at 4000

iterations and the network was evaluated. If the training iterations
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were increased beyond 4000 iterations, the network would begin to

associate the unexplained error with the independent variables which is

analogous to the over-fitting model problem in regression analysis.

Figure 34 is a plot of the R2 and MAE values with respect to the

number of training iterations for the reduced multivariable network.

Similar to the full network, this network makes rapid progress from 500

to 1500 training iterations, but begins to plateau at an R2 value of

approximately .68 and a MAE value of approximately 3900. Training was

terminated at 4000 iterations and the network was evaluated.
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Figure 34. USAFE MSC Reduced Multivariable Network Model
Training Iterations

ForecastingEvaluation. It was more difficult to achieve

accurate USAFE MSC tonnage forecasts compared to the PACAF MSC tonnage

torecasts because of the higher variability in the USAFE MSC tonnage
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data. Table 20 compares the forecasting accuracy of the full network

(4000 iterations), the reduced network (4000 iterations), the DSXR model

and the multiple (three variable) regression model (Appendix 0 is a

complete output of the full and reduced network models). The multiple

regression and multivariable network models outperformed the DSXR model

in MAE and minimum absolute error, while the full multivariable network

outperformed the DSXR model in every category. The reduced network

(which used the same three variables as the multiple regression) slightly

outperformed the multiple regression model. The additional six variables

used in the full network did not significantly contribute to increasing

the R2 value, but did contribute to improving forecasting accuracy

compared to the DSXR model (Figure 35).

Table 20

USAFE MSC Multivariable Network Forecasting Accuracy

Multiple Full Reduced
Actual DSXR Model Regression Network Network

FYQtr Tonnage Forecasts Forecasts Forecasts Forecasts
88/3 81479 71601 80827 76908 79684
88/4 76619 71977 77635 75211 75821
89/1 73847 66066 76831 76125 75344
89/2 63853 71427 68757 73171 67320
89/3 74806 81697 75914 81517 74269
89/4 88613 79357 74597 83334 72977

MAE: 7670 4113 4940 3968
Minimum Error: 4641 652 1474 537
Maximum Error: 9877 14016 9318 15636

Rsquare: .16 .68 .76 .68
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Figure 35. USAFE MSC Full and Reduced Multivariable
Network Forecasts

Chapter Summaa

This chapter started with an examination of the USAFE and PACAF

sealift simple regression forecasting models presently used by DSXR.

Multiple regression models using flying hours by aircraft type and

military population variables were developed and tested for forecasting

accuracy. The last section presented the development and testing of

neural network forecasting models. The results of this analysis are

further discussed in Chapter VI.
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V. MAC SDT Forecasting Results and Analysis

This chapter is divided into five parts. The first part is an

analysis of the PACAF and USAFE MAC tonnage data. Part two examines the

DSXR simple regression models used to forecast MAC tonnage requirements

to PACAF and USAFE. Part three and four present the development and

results of the multiple regression models and the multivariable network

models respectively. The last part presents the development and results

of the time ser-es forecasting networks.

In addition to the flying hour and manpower variables, other

variables that have a major influence on MAC tonnage are airlift policies

and budget restrictions. In September 1988 (FY 1988/4), transportation

priority 2 (TP-2) cargo was restricted from the airlift system in order

to save funds and as a consequence MAC tonnage to PACAF and USAFE

dramatically declined. Over 90% of the total SDT cargo is sealifted, but

60% of the funds are spent on airlifting the remaining 10% of the total

SDT tonnage (19).

In order to account for the decline in PACAF and USAFE MAC tonnage

resulting from the TP-2 restriction, all the models (DSXR simple

regression, multiple regression, and networks) were developed from data

that contained the change. The forecast period for testing each models'

forecasting accuracy is different from the MSC forecast period. The

forecast period for these models is FY 1989/1 to 1990/1. Unlike the

PACAF and USAFE MSC forecast period, the MAC forecast period has been

reduced to five quarters because of the lack of data for FY 1990/2.

111



Data Analysis

Plots. Figure 36 graphically shows the quarterly PACAF MAC tonnage

from FY 1978/1 to 1990/1. Despite the steadily increasing trend in PACAF

flying hours from 1978 to 1988, the tonnage appears to be fairly

consistent and fluctuates from 5500 tons to 7000 tons with a mean of

approximately 6000 tons. Unlike the PACAF MSC tonnage which had large

peaks in 1983 and 1985 and an increasing trend, the PACAF MAC tonnage has

no apparent trend or seasonality. In the third quarter of 1988, the MAC

tonnage begins to decline and reaches a lower tonnage level for 1989 as a

result of the transportation priority 2 (TP-2) cargo restriction.

Figure 37 shows the quarterly USAFE MAC tonnage from FY 1978/1 to

1990/1. Unlike the USAFE flying hours which have been steadily

increasing since 1978, this plot shows a slight downward trend in tonnage

from 1978 to 1983 and then an increasing trend after 1983. The

variability appears to be relatively constant from 1978 to 1985, but

begins to increase in 1986. Similar to the PACAF data, this plot shows

the sharp decrease in tonnage resulting from the TP-2 policy change.

USAFE MAC tonnage does not have periods of increased tonnage requirements

that are evident in the USAFE MSC tonnage plots.

Figure 38 is a plot of the PACAF MAC tonnage with respect to the

PACAF total flying hours. The plot appears to be randomly distributed

and does not indicate a linear relationship between flying hours and

tonnage. Contrary to the PACAF MAC tonnage, the USAFE MAC tonnage

(Figure 39) appears to show a slight linear relationship when flying

hours are above 65,000 hours. Below 65,000 hours, the relationship does

not appear linear.
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Trend and Seasonal Analysis. PACAF and USAFE MAC tonnage and flying

hours were analyzed using Gardner's trend and seasonal analysis

methodology (Appendix P). Unlike the PACAF and USAFE MSC tonnage data

sets, the PACAF and USAFE MAC tonnage data sets are not seasonal and do

not exhibit a trend.

Pattern Identification. The plot of PACAF MAC tonnage with respect

to fiscal year (Figure 36) appears to be random with no autoregressive

(AR) or moving average (MA) aspect. Appendix Q is the SAS output of the

autocorrelation analysis for this data set (FY 1978 to 1988/2). The

Q-statistic indicates this series is white noise (random with no AR or MA

aspect) since the value (Q = 7.71) is less than the chi square value

(X2 = 12.5916 with 6 df and 95% confidence interval). Although the

Q-statistic and plot indicate the series has no patterns, the

autocorrelation analysis revealed a small spike for the first lag in the

ACF (r, = .365) and PACF which was beyond 2 standard deviations. This

would indicate the possibility of an AR and/or MA aspect. The

autocorrelations and partials drop to near zero after the third lag and

signify the series is stationary.

The plot of USAFE MAC tonnage with respect to fiscal year

(Figure 37) appears to have a 'wandering mean' and changing variance.

The Q-statistic (Appendix Q) indicates this series is not white noise

since the value (Q = 27.67) is greater than the chi square value

(X2 = 12.5916 with 6 df and 95% confidence interval). The auto-

correlations are significantly different from zero after the second lag

which means the series is not stationary. The analysis revealed spikes

for the tirst lag and fourth lag of the ACF (r, = .40871, r, = .51296)
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and PACF which were beyond 2 standard deviations which suggests an AR

and/or MA aspect.

DSXR Simple Regression Model Validation and Forecasting Evaluation

DSXR PACAF MAC Model. The DSXR simple regression PACAF MAC model

(dependent variable is PACAF airlift tonnage and the independent variable

is the total PACAF aircraft flying hours) was developed from an altered

data set (8 quarters, FY 1987/1 to FY 1988/4) that added TP-2 cargo

tonnage back into quarters 2, 3 and 4 of FY 1988. A management decision

was made to forecast the PACAF MAC tonnage without the change in policy

because it was believed the decrease in tonnage requirements would not be

sustained (19). Since the data was altered, only the forecasts

Table 21) are presented in this section.

Table 21

DSXR PACAF MAC Model Forecasting Accuracy

Actual DSXR Model
FY/Qtr Tonnage Forecasts
1989/1 3841 5782

2 4124 6064
3 4056 6150
4 3841 4883

1990/1 4305 4902

MAE: 1523
Minimum Error: 597
Maximum Error: 2094
Rsquare: 0.58

based on 8 quarter regression model with:

slope = .21958
intercept = -3149.8

1. Forecasting Accuracy. The model was used to forecast for the

five quarter period from fiscal year (FY) 1989/1 to 1990/1 using actual
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flying hours as the independent variable. All the forecasts are

overestimated because the model was developed from data that did not

account for the decline in airlift resulting from the TP-2 restriction.

DSXR USAFE MAC Model. Appendix R contains the complete SAS output

of the DSXR regression model used to forecast for the five quarter period

from FY 1989/1 to 1990/1. The dependent variable is USAFE airlift

tonnage and the independent variable is the total USAFE aircraft flying

hours. Similar to the DSXR PACAF MAC model, this model was developed by

using 8 quarters of data (1987/1 to 1988/4), but without altered data.

Table 22 displays a portion of the SAS output. The following diagnostic

output showed the following:

1. Two Tailed Test.

HO: P1 = 0

Ha: Pi does not equal 0

Test Statistic: t = 2.609

Rejection Region: t 0 s < -2.447, t o > 2.447

where: a = .05, df = 6.

The two tailed test indicates the model is significant at the .05

level of confidence and indicates the flying hour (independent) variable

contributes information for the prediction of the tonnage (dependent)

variable.

2. R' Vdlue. The R2 value (.5315) is relatively low, but

indicates the regression is an adequate model.

3. Residual Analysis. A plot of the residuals versus the predicted

values (Appendix R, Figure 77) appears to be randomly distributed with no

heteroscedasticity problem. The plot of the residuals versus flying

117



Table 22

DSXR USAFE MAC Model Analysis of Variance

SUM OF MEAN
SOURCE DF SQUARES S F VALUE PROB>F

Model 1 10782499.865 10782499.865 6.808 0.0402
Error 6 9503160.0104 1583860.0017
C Total 7 20285659.875

Root MSE 1258.51500 R-square 0.5315
Dep Mean 9092.37500 Adj R-sq 0.4535
C.V. 13.84143

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > IT:

INTERCEP 1 -9755.237091 7237.3126493 -1.348 0.2263
FH 1 0.244523 0.09371681 2.609 0.0402

hours (Appendix S, Figure 78) does not appear to show a problem with the

assumption of linearity between tonnage and flying hours (the residuals

seem to be randomly distributed). Since this model does not contain an

intervention variable to account for the decline in airlift from the TP-

2 restrictions, the plot of the residuals versus N (Appendix R,

Figure 79) (N = successive time periods) shows how the errors become

increasingly negative in period 6 through 8 (FY 1988/2 through 1988/4).

The Wilk Shapiro Test for Normality was used to determine whether the

residuals were normally distributed (Appendix R).

HO: The residual distribution function is a normal distribution

function.

Ha: The residual distribution function is not a normal

distribution function.

Test Statistic: W = .912811
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Rejection Region: W < W.05 = .818

where: a = .05, n = 8.

The Wilk Shapiro Test indicates there is insufficient evidence to

reject the null hypothesis based on a 95% confidence interval.

4. Outlier Detection. A plot of the residual values versus the

studentized residuals (Appendix R) shows all the residuals falling within

2 standard deviations indicating no outliers are present in the data set.

5. Durbin Watson (DW) Test. Data set was too small to conduct this

test.

6. Forecasting Accuracy. The model was used to forecast for the

five quarter period from (FY) 1989/1 to 1990/1 using actual flying hours

during this period. Table 23 shows the results of the model's forecasts.

Table 23

DSXR USAFE MAC Model Forecasting Accuracy

Actual DSXR Model
FY/Qt Tonnage Forecasts
1989/1 7569 6934

2 6005 8409
3 6260 11224
4 6432 10582

1990/1 5721 7003

MAE: 2687

Minimum Error: 635
Maximum Error: 4964

Rsquare: .53

The results of the forecasts show the DSXR model overestimating four

of the five quarters. The model has no intervention variable to account

for the TP-2 restriction so the forecasts appear to be non-restricted TP-

2 forecasts.
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7. Analysis Summary. The model was a statistically valid model,

but it did not account for the change in airlift from the TP-2

restrictions. The model's lack of fit with respect to the TP-2

restriction was evident in the residual plots (residuals versus N) and

with the model's forecasts which were overestimated and appeared to be

non-restricted TP-2 forecasts.

Multiple Regression Models

Similar to the PACAF and USAFE MSC models, the objective of the

multiple regression models was to determine whether the breakout of the

total flying hour variable into specific aircraft types and the addition

of military population variables (Appendix F) contributed to increasing

PACAF and USAFE airlift forecasting accuracy.

Data. Like the MSC data, fourteen quarters (three and a half years)

of data (FY 1985 (quarter 3) to FY 1988 (quarter 4)) were used to develop

the regression models. Five quarters (FY 1989/1 through FY 1990/1) were

withheld to measure forecasting accuracy. In order to improve the fit of

the PACAF and USAFE models, the MAC tonnage variable was transformed by

taking its logarithm (LMAC).

Unlike the MSC models, an intervention variable (dummy variable) was

added to both PACAF and USAFE models to account for the TP-2 restriction.

From FY 1985/3 to 1988/2, the variable was 'turned on' with a '1' and

from FY 1988/4 through 1990/1 the variable was 'turned off' with a '0'.

Despite the fact that TP-2 restriction occurred in FY 1988/4, both data

sets show major decreases in tonnage beginning in FY 1988/3. To account

for this decline, the intervention variable was 'turned half on' with a

'.5'.
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The R2, F-test, and Durbin Watson values were used to assess the fit

of the models and the mean absolute error (MAE), minimum absolute error,

and maximum absolute error were used to measure their forecasting

accuracy.

PACAF MAC Multiple Regression Model Development. The methodology

that was used to develop the PACAF MSC multiple regression model was used

to develop the PACAF MAC multiple regression model. Out of the ten

initially selected independent variables (seven aircraft, two military

population variables and the TP-2 variable), six were eliminated because

of multicollinearity problems or statistically non-significant t-values.

The resulting four variable model was statistically significant at the

95% confidence level (Appendix S). The four variable model was;

y = 14.700077 - .000375x, + .000298x2 - .000224x3 + .575525x,

where: y = quarterly airlift tonnage (logarithm)

x, = quarterly airman population

X2 = quarterly B-52 flying hours

X3 = quarterly F-15 flying hours

X = TP-2 dummy variable.

Model Validation and Forecasting Evaluation. Appendix S is

the complete SAS output of the multiple regression model. Table 24

displays a portion of the SAS output. The following diagnostic output

showed the following:

1. The analysis of variance F-test.

HO: P1 = P2 = P3 = P3 = 0

Hit: At least one Pi does not equal 0

Test Statistic: F = 21.417
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Rejection Region: F > F.05 = 3.63

where: a = .05, v, = 4, v2 = 9.

The F test proves the model is significant at the .05 level of

confidence and indicates the independent variables contribute information

for the prediction of the tonnage (dependent) variable.

Table 24

PACAF MAC Multiple Regression Model Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 4 0.24888 0.06222 21.417 0.0001
Error 9 0.02615 0.00291
C Total 13 0.27503

Root MSE 0.05390 R-square 0.9049
Dep Mean 8.66209 Adj R-sq 0.8627
C.V. 0.62225

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > !T!

INTERCEP 1 14.700077 3.45308085 4.257 0.0021
AMN 1 -0.000375 0.00022556 -1.664 0.1306
B52 1 0.000298 0.00013712 2.175 0.0576
Fi5 1 -0.000224 0.00008736 -2.563 0.0305
TP2 1 0.575525 0.09754821 5.900 0.0002

2. R2 Value. The model has an excellent fit with a high R2 value

(.90).

3. Residual Analysis. A plot of the residuals versus the predicted

values (Appendix S, Figure 80) appears to be randomly distributed and

shows no heteroscedasticity problem. The plots of the residuals versus

each of the independent variables (Appendix S, Figures 81 - 83) also

appear to be randomly distributed and show no problem with the assumption
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of linearity between tonnage and each of the independent variables. The

Wilk Shapiro Test for Normality was used to determine whether the

residuals were normally distributed.

Ho: The residual distribution function is a normal distribution

function.

Ha: The residual distribution function is not a normal

distribution function.

Test Statistic: W = .986504

Rejection Region: W < W.05 = .874

where: a = .05, n = 14.

The Wilk Shapiro Test indicates there is insufficient evidence to

reject the null hypothesis and accept the alternative hypothesis based on

a 95% confidence interval.

4. Multicollinearity. The model contains two variables (B-52 and

AMN) that are positively correlated (r = .55) (Appendix T). The variance

inflation factors were computed to determine whether a problem of

multicollinearity existed between the variables.

H.: Variables xI, x2, x3, and x. are more closely related to

the dependent variable than each other.

Ha: Variables x,, x2, x3, and x4 are more closely related to

each other than the dependent variable.

Test Statistic: VIF = 2.65 (x,)

VIF = 2.13 (x2)

VIF = 2.61 (x3)

VIF = 3.57 (x,)

Rejection Region: VIF > 1 / (1 - R2 ) = 10.
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The results prove that the independent variables are more closely

related to the dependent variable than to each other.

5. Outlier Detection. The output of the studentized residuals

(Appendix S) shows all the residuals falling within 2 standard deviations

and no problems with outliers.

6. Durbin Watson (DW) Test. This test was used to test for the

existence of first order autocorrelation.

H.: The residuals are not negatively autocorrelated.

Ha: The residuals are negatively autocorrelated.

Test Statistic: DW = 2.409

Rejection Region: 4 - d, < DW < 4 (negative autocorrelation)

Acceptance Region: 2 < DW < 4 - d, (no autocorrelation, neg.test)

where: d, = .69, du = 1.97.

There is insufficient evidence to reject the null hypothesis and

accept the alternative hypothesis based on a 95% level of confidence. The

plot of the residuals versus N (Appendix S, Figure 84) (N = successive

time periods) appears to be randomly distributed.

7. Forecasting Accuracy. The multiple regression model was used to

forecast for the five quarter period from FY 1989/1 to 1990/1. Table 25

shows the results of the multivariable model forecasts compared to the

DSXR PACAF MAC model.

Unlike the DSXLR model, the multiple regression model underestimated

on all five of the forecasts, but achieved the lowest mean absolute

error, minimum absolute error, and maximum absolute error compared to the

DSXR model. Figure 40 is a plot of the DSXR forecasts compared to the

multiple regression forecasts which shows the overestimations by the DSXR
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simple regression model and the underestimations by the multiple

regression model.

Table 25

PACAF MAC Multiple Regression Model Forecasting Accuracy

Multiple
Actual DSXR Model Regression

FY/Qtr Tonnage Forecasts Forecasts

1989/1 3841 5782 3258
2 4124 6064 2826
3 4056 6150 3298
4 3841 4883 3435

1990/1 4305 4902 2967

MAE: 1523 877

Minimum Error: 597 406
Maximum Error: 2094 1338

Rsquare: 0.58 0.90
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Figure 40. DSXR and Multiple Regression PACAF MAC

Forecasts
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8. Summary of Analysis. Overall, the model was useful based on

the results of the F-test (95% confidence level) and the residual

analysis revealed no problems with heteroscedasticity, nonlinearity,

multicollinearity and autocorrelation. The independent variables were

positively correlated (r > +.5) and negatively correlated (r < -.5) with

several variables that were not included in the model (Table 26)

(Appendix T). The model's forecasts were underestimated, but the

forecast were more accurate than the DSX] forecasts.

Table 26

PACAF MAC Multiple Regression Model Independent Variable Correlations

Positively Negatively
Independent Correlated Correlated
Variables Variables Variables

AMN F-16 OFF, C130, C135

B-52 (none) (none)

F-15 (none) (none)

USAFE MAC Multiple Regression Model. Similar to the PACAF MAC

model, the USAFE MAC multiple regression model was developed from the ten

initially selected independent variables (seven aircraft, two military

population variables and the TP-2 variable). Six variables were

eliminated because of multicollinearity problems or statistically non-

significant t-values. The resulting four variable model was

statistically significant at the 95% confidence level (Appendix U). The

four variable model was;

y = 12.07 + .000712x, - .000396x2 + .000061234x3 + .22798x,

where: y = quarterly airlift tonnage (logarithm)
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x, = quarterly officer population

X2 = quarterly airman population

X3 = quarterly A-10 flying hours

X4 = TP-2 dummy variable.

Model Validation and Forecasting Evaluation. Appendix U is

the complete SAS output of the multiple regression model. Table 27

displays a portion of the SAS output. The following diagnostic output

showed the following:

1. The analysis of variance F-test.

Ho: PI = P2 = P3 = 0

Ha: At least one Pi does not equal 0

Test Statistic: F = 38.162

Rejection Region: F > F.05 = 3.63

where: a = .05, v, = 4, v2 = 9.

The F test proves the model is significant at the .05 level of

confidence and indicates the independent variables contribute information

for the prediction of the tonnage (dependent) variable.

2. R2 Value. The model has an excellent fit with a high R2 value

(.94).

3. Residual Analysis. A plot of the residuals versus the predicted

values (Appendix U, Figure 85) appears to be randomly distributed and

4 shows no heteroscedasticity problem. The plots of the residuals versus

each of the independent variables (Appendix U, Figure 86 - 88) also

appear to be randomly distributed and show no problem with the assumption

of linearity between tonnage and each of the independent variables. The

127



Wilk Shapiro Test for Normality was used to determine whether the

residuals were normally distributed.

H.: The residual distribution function is a normal

distribution function.

Ha: The residual distribution function is not a normal

distribution function.

Test Statistic: W = .937

Rejection Region: W < W.0 5 = .874

where: a = .05, n = 14.

The Wilk Shapiro Test indicates there is insufficient evidence to

reject the null hypothesis and accept the alternative hypothesis based on

a 95% confidence interval.

Table 27

USAFE MAC Multiple Regression Model Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 4 0.29379 0.07345 38.162 0.0001
Error 9 0.01732 0.00192
C Total 13 0.31111

Root MSE 0.04387 R-square 0.9443
Dep Mean 9.14729 Adj R-sq 0.9196
C.V. 0.47960

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > :T:

INTERCEP 1 12.070129 2.30016919 5.247 0.0005
OFF 1 0.000712 0.00016972 4.193 0.0023
AMN 1 -0.000396 0.00010479 -3.776 0.0044
A1O 1 0.000061234 0.00001052 5.820 0.0003
TP2 1 0.227948 0.06024109 3.784 0.0043
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4. Multicollinearity. The airman population variable (AMN) was

positively correlated (r = .53) with the officer population variable

(OFF) and with the A-1O flying hour variable (r = .52) (Appendix V). The

variance inflation factors were computed to determine whether a problem

of multicollinearity existed between the variables.

Ho: Variables x1, x2, x3, and x4 are more closely related

to the dependent variable than each other.

Ha: Variables x1, x2, x3, and x4 are more closely related

to each other than the dependent vari;'ie.

Test Statistic: VIF = 3.56 (xi)

VIF = 2.70 (x2)

VIF = 1.41 (x3)

VIF = 2.05 (x4)

Rejection Region: VIF > 1 / (I - R2 ) = 16.7.

The results prove that both independent variables art more closely

related to the dependent variable than to each other.

5. Outlier Detection. The output of the studentized residuals

(Appendix W) shows all the residuals falling within 2 standard deviations

and no problems with outliers.

6. Durbin Watson (DW) Test. This test was used to test for the

existence of first order autocorrelation.

H,: The residuals are not negatively autocorrelated.

Ha: The residuals are negatively autocorrelated.

Test Statistic: DW = 2.449

Rejection Region: 4 - d, < DW < 4 (negative autocorrelation)

Acceptance Region: 2 < DW < 4 - du (no autocorrelation, neg.test)

where: d, = .69, d, = 1.97.
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There is insufficient evidence to reject the null hypothesis and

accept the alternative hypothesis based on a 95% level of confidence..

The plot of the residuals versus N (Appendix U, Figure 89) ('1 = automatic

observation counter that creates a sequential period indicator) is

randomly distributed.

7. Forecasting Accuracy. The multiple regression model was used to

forecast for the five quarter period from FY 1989/1 to 1990/1. Table 28

shows the results of the multiple regression model forecasts compared to

the DSXR USAFE MAC model.

Similar to the DSXR model, the multiple regression model

overestimated on four of the five forecasts, but achieved the lo est mean

absolute error, minimum absolute error, and maximum absolute error

compared to the DSXR model. Figure 41 is a plot of the DSXR model

forecasts compared to the multiple regression forecasts which shows the

overestimations by the DSXR simple regression model compared to the

multivariable regression model forecasts.

Table 28

USAFE MAC Multiple Regression Model Forecasting Accuracy

Multiple
Actual DSXR Model Pegression

FY/Qtr Tonnage Forecasts Forecasts
1989/1 7569 6934 6398

2 6005 8409 6308
3 6260 11224 7019
4 6432 10582 7193

1990/1 5721 7003 6004

MAE: 2687 655
Minimum Error: 635 283
t'aximum Error: 4964 1171

Rsquare: .53 .94
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8. Summary of Analysis. Overall, the model was a useful based on

the results of the F-test (95% confidence level) and the residual

analysis revealed no problems with heteroscedasticity, nonlinearity,

multicollinearity and autocorrelation. Like all the other multiple

regression models, the independent variables were positively correlated

(r > +.5) and negatively correlated (r < -.5) with several variables that

were not included in the model (Table 29) (Appendix V). The model's

forecasts were overestimated, but the forecast were more accurate than

the DSXR forecasts.
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Figure 41. DSXR and Multiple Regression USAFE MAC
Forecasts
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Table 29

USAFE MAC Multiple Regression Model Independent Variable Correlations

Positively Negatively
Independent Correlated Correlated
Variables Variables Variables

OFF F-4 F-16

ANN F-4 (none)

A-10 F-111, C-135, (none)
F-4, F-15

Neural Networks

Similar to the PACAF and USAFE MSC networks, two types of neural

network forecasting models were developed for the PACAF and USAFE MAC

data sets. One type of network (full multivariable network or full

network) used all 10 variables (7 aircraft variables, 2 military

population, and the TP-2 restriction dummy variable), and the other

network (reduced multivariable network or reduced network) used the same

four variables used by the multivariable regression models.

Data. Similar to the regression models, fourteen quarters of data

(1985/3 to 1988/4) were used to develop the networks (Appendix F, G, and

J (actual data), Appendix M and N (transformed data)).

PACAF MAC Networks. The full multivariable network model consisted

of ten inputs (xj through x1o in Table 30) and one output (y) with two

hidden layers consisting of fifteen processing elements in the first

layer and six processing elements in the second layer. The reduced

multivariable network model consisted of four inputs (x7 through x10 in

Table 30) and one output (y) with two hidden layers consisting ot ten

processing elements in the first layer and five processing elements in

the second layer.
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Network Development. Figure 42 is a plot of the R2 and MAE

values with respect to the number of training iterations (full

multivariable network). At 2500 iterations, the k2 value begins to

plateau at an approximate value of .81. The MAE values start out high,

but decrease as the number of training iterations increase. Since the R2

value became relatively stable, the training was terminated at 4000

iterations and the network was evaluated.

Figure 43 is a plot of the R 2 and MAE values with respect to the

number of training iterations for the reduced multivariable network. Like

the full multivariable network, this network's R2 value increases

Table 30

PACAF MAC Network Independent Variables

Output

y = quarterly airlift tonnage

Inputs

x, = quarterly A-10 flying hours

x 2 = quarterly F-16 flying hours

X 3 = quarterly officer population

X4 = quarterly C-130 flying hours

X5 = quarterly C-135 flying hours

x 6 = quarterly F-4 flying hours

X7 = quarterly F-15 flying hours

x8 = quarterly B-52 flying hours

xg = quarterly airman population

xl0 = TP-2 restriction dummy variable.
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with a decreasing rate as the number of training iterations increase and

the MAE value starts out high and begins to decrease. Training for this

network was also terminated at 4000 iterations.

Forecasting Evaluation. Table 31 compares the forecasting

accuracy of the multivariable networks with the multiple (four variable)

regression model (Appendix W is the output for the full and reduced

network). The full multivariable network (4,000 training iterations)

achieved the lowest MAE and the smallest minimum absolute error while the

reduced multivariable network (4,000 training iterations) achieved the

lowest maximum error. Overall, the reduced multivariable network and the

full multivariable network had relatively similar forecasting capability

and outperformed the multiple regression model. Figure 44 is a plot of

the full and reduced multivariable network forecasts.

Table 31

PACAF MAC Multivariable twork Forecasting Accuracy

Multiple Full Reduced
Actual Regression Network Network

FY/Q_ Tonnage Forecasts Forecasts Forecasts
89/1 3841 3258 3890 3783
89/2 4124 2826 3905 3749
89/3 4056 3298 3947 3845
89/4 3841 3435 3829 3888
90/1 4305 2967 3698 3739

MAE: 877 199 251
Minimum Error: 406 12 47
Maximum Error: 1338 607 566

Rsquare: .90 .83 .83
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USAFE MAC Networks. Similar to the PACAF MAC network, the full

multivariable network model consisted of ten inputs (xj through xj, in

Table 32) and one output (y) with two hidden layers consisting of fifteen

processing elements in the first layer and six processing elements in the

second layer. The reduced multivariable network consisted of four inputs

(x7 through x10 in Table 32) and one output (y) with two hidden layers

consisting of ten processing elements in the first layer and five

processing elements in the second layer.
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Table 32

USAFE MAC Network Independent Variables

Output

y = quarterly sealift tonnage

Inputs

x, = quarterly C-130 flying hours

x, = quarterly F-4 flying hours

X3 = quarterly C-135 flying hours

X4 = quarterly F-ill flying hours

X5 = quarterly F-16 flying hours

X6 = quarterly F-15 flying hours

X7 = quarterly A-lO flying hours

xB = quarterly officer population

xg = quarterly airman population.

xl0 = TP-2 restriction dummy variable.

Network Development. Figure 45 is a plot of the R2 and MAE

values with respect to the number of training iterations for the full

multivariable network. The relationship between the independent

variables and airlift tonnage appears to be a stronger relationship than

the relationship between the independent and airlift tonnage for the

PACAF MAC data. At only 2,000 iterations, the network achieved a .92 R2

value in contrast to the lower .79 R2 value achieved by the PACAF MAC

model. This network required significantly more training iterations than

any other model. After 20,000 iterations, training was terminated and

the network was then evaluated.
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Training Iterations

Figure 46 is a plot of the R2 and MAE values with respect to the

number of training iterations for the reduced multivariable network.

After 3000 training iterations, this network showed small increases in

the R2 value while the MAE value remained relatively constant. The

training for this network was terminated dC 4000 iterations.

Forecasting Evaluation. Table 33 compares the forecasting

accuracy of the multivariable network models with the multiple (four

variable) regression model (Appendix W is the full and reduced network

output). Overall, the full multivariable network model (with 20,000

training iterations) achieved the lowest MAE and the smallest minimum and

maximum absolute error. The multivariable regression model slightly

outperformed the reduced multivariable network (with 4,000 training
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iterations). Figure 47 is a plot of the full and reduced multivariable

network forecasts.
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Figure 46. USAFE MAC Reduced Multivariable Network
Training Iterations

Table 33

USAFE MAC Multivariable Network Forecasting Accuracy

Multiple Full Reduced
Actual Regression Network Network

FYJtr Tonnage Forecasts Forecasts Forecasts
89/1 7569 6398 6642 6498
89/2 6005 6308 6013 6462
89/3 6260 7019 6154 7096
89/4 6432 7193 6389 7275
90/1 5721 6004 5824 6247

MAE: 655 237 746
Minimum Error: 283 8 457
Maximum Error: 1171 927 1071

Rsquare: .94 .98 .92
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Time Series Neural Networks

As an alternative to using aircraft flying hour and military

population independent variables, neural network forecasting models were

developed using a univariate time series approach. The time series

forecasting methodology is based on the principle that historical changes

in the data will be repeated in the future. The historical changes for

the PACAF and USAFE MSC tonnages which were characterized with time

periods of increased tonnage requirements (large peaks) are unlikely to

be repeated in the near future because of the eminent reduction in forces

at overseas locations. Unlike the MSC data, the PACAF and USAFE MAC

tonnage data are applicable to this approach since the data are more

stable and do not exhibit the large peaks that are evident in the MSC

data.
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Data. PACAF and USAFE MAC actual tonnage data from FY 1983/1 to

1988/4 (five years) (Appendix X) were used to develop the time series

networks. The same transformation equations that were used for the

previous networks were used for the time series networks. The forecast

period (FY 1989/1 to 1990/1) also remained the same.

PACAF and USAFE MAC Time Series Network Development. The PACAF and

USAFE MAC time series network configuration (Figure 48) consisted of five

inputs and one output (y) with two hidden layers consisting of ten

processing elements in the first layer and five processing elements in

the second layer. The networks used four previous quarters of airlift

tonnage and the TP-2 dummy variable (x, through x5) as inputs and the

output (y) was the forecast for the next quarter's tonnage at time t + 1

(Table 34).

The network training examples were presented to the time series

networks in a 'shift register' manner (Table 35) and each network was

developed with 10,000 training iterations. The intervention variable

(x,) was used in a similar fashion to the multiple regression

intervention variables. The PACAF MAC time series network model achieved

a R2 value of .74 while the USAFE time series network model achieved a R2

value of .68. Figures 49 (PACAF MAC time series model) and 50 (USAFE MAC

time series model) display each network's pattern recognition capability

by showing the actual data versus the network's output. Each network

data point (Fy 1984/1 to 1988/4) represents a predicted value for tonnage

at t+l based on the previous four quarters of actual tonnage which the

network was presented during the training iterations. The network data

points (FY 1989/1 to 1990/1) are actual forecasts.
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Network Configuration

Table 34

PACAF and USAFE MAC Time Series Network Independent Variables
-------------------------------------------------------------

y = airlift tonnage at time (t+l)

Inputs

x, = airlift tonnage at time (t)

X2 = airlift tonnage at time (t-l)

X3 = airlift tonnage at time (t-2)

x, = airlift tonnage at time (t-3)

x. = TP-2 intervention (dummy) variable.
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Table 35

Time Series Network Training and Forecasting Iteration Methodology

Predicted
Training Inputs (FY/Qtr) Value (FY/Qtr)
Iteration x1  x2  x3  x4  x5  y

1 83/1 83/2 83/3 83/4 .9 84/1

2 83/2 83/3 83/4 84/1 .9 84/2

18 87/2 87/3 87/4 88/1 .9 88/2

19 87/3 87/4 88/1 88/2 .45 88/3

20 87/4 88/1 88/2 88/3 0 88/4

Forecast Inputs (FY/Qtr) Forecast (FY/Qtr)

Iteration x1  x2  x3  x4  x5 y

1 88/1 88/2 88/3 88/4 0 89/1

2 88/2 88/3 88/4 89/1 0 89/2

5 89/1 89/2 89/3 89/4 0 90/1
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PACAF MAC Time Series Network Forecasting Evaluation. Since the

PACAF MAC full multivariable network outperformed all other PACAF MAC

models, the forecasting accuracy of the PACAF MAC time series network

model was compared with the PACAF MAC full multivariable network (Table

36) (Appendix Y is the PACAF and USAFE time series network output). The

time series network model slightly outperformed the full multivariable

network by achieving the lowest MAE and the smallest maximum absolute

error. Figure 51 graphically shows the forecasting accuracy of the time

series network model and the multivariable network model.

Table 36

PACAF MAC Time Series Network Forecasting Accuracy

Full Time Series
Actual Network Network

FYKjtr Tonnage Forecasts Forecasts
1989/1 3841 3890 3868

2 4124 3905 4014
3 4056 3947 3987
4 3841 3829 3893

1990/1 4305 3698 3887

MAE: 199 135
Minimum Error: 12 27
Maximum Error: 607 418

Rsquare: .83 .74

1 49



4500

4400

4300 -

C 4200
zz
0 4100

S4000

3900

3800-

3700

3600 89,/1 89/2 893 89/4 901

FISCAL YEAR/QUARTER

-a ACTUAL -E rULL NETIOPK - TIME SIES NET

Figure 51. PACAF MAC Time Series Network Forecasts

USAFE MAC Time Series Network Forecasting Evaluation. Table 37

compares the forecasting accuracy of the USAFE MAC time network model

with the USAFE MAC full multivariable network (full network outperformed

all other previous models). Unlike the PACAF MAC data, the full

multivariable network model achieved the lowest MAE, the smallest minimum

absolute error, and the smallest maximum absolute error. The time series

network outperformed the USAFE MAC multiple regression and reduced

multivariable network in MAE and smallest minimum error. Figure 52

graphically shows the forecasting accuracy of the time series network

model and the full multivariable network model.
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Table 37

USAFE MAC Time Series Network Forecasting Accuracy

Full Time Series

Actual Network Network
FY/Qtr Tonnage Forecasts Forecasts
1989/1 7569 6642 6482

2 6005 6013 6115
3 6260 6154 5946
4 6432 6389 6012

1990/1 5721 5824 5986

MAE: 237 439

Minimum Error: 8 110
Maximum Error: 927 1087

Rsquare: .98 .68
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Figure 52. UJSAF7 MAC Time Series Network Forecasts
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Chapter Summary

This chapter started with an examination of the USAFE and PACAF MAC

simple regression forecasting models presently used by DSXR. Multiple

regression models and multivariable (full and reduced) neural networks

using flying hours by aircraft type and military population variables

were formulated and tested for forecasting accuracy. The last section

presented the development and testing of time series neural network

forecasting models. The results of this analysis are further discussed

in Chapter VI.
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VI. Research Conclusions and Findings

This chapter is divided into three parts. The first part presents

the research conclusions and addresses the two research objectives. The

second part presents other research findings and part three addresses

areas for future study.

Research Conclusions

Research Objective 1. The first objective of this research was to

develop multiple regression and neural network models that were

statistically more accurate and reliable than the models currently used

by DSXR. Figure 53 shows the rank order (1 = best performer, 5 = worst

performer) of the full multivariable network, reduced multivariable

network, multiple regression, DSXR simple regression, and the 12 quarter

average in terms of MAE, minimum absolute error, and maximum absolute

error for the PACAF and USAFE MSC tonnage data sets. The dverage rank

for each model was determined by summing the rank order for each categorv

and dividing by three. For the PACAF MSC data set, the full

multivariable ,.etwork outperformed all other models in every category.

The reduced multivariable network and multiple regression model suffered

from extrapolation problems and consequently overestimated the forecasts

for FY 1989/2 to 1989/4. Since the PACAF MSC data was relatively stable

after 1986, the simple 12 quarter average provided accurate forecasts in

terms of MAE, but achieved the largest maximum absolute error out of the

five models. The DSXR simple regression model also performed fairly

well, but its maximum absolute error was almost three times the full

multivariable network maximum absolute error. The full multivariable
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network was the only network that outperformed the DSXR model in every

category.

PACAF j USAFE __

MINMIN MAX AVE IMIN MAXIAVE

MODEL MAE ERR ERR RANK MAE ERRIERRRANKI

Full Multivariable Network 1 1 1 1.0 3 3 i 1 2.3

Reduced Multivariable Network 5 4 (3 4.0 1 1 4 12.0

Multiple Regression 4 { 5 2 3.7 2 2 3 12.3 i

i DSXR Simple Regression 3 2 4 13.0 5 5 2 14.0 il

12 Quarter Average 2 j3 5 13.3 4 4 5 4.3 1

Figure 53. PACAF and USAFE MSC Model Rank Order

For the USAFE MSC data set, the reduced multivariable network

outperformed all other models in MAE and minimum absolute error, while

, full multivariable network achieved the lowest maximum absolute

error. The multivariable networks (reduced and full), the multiple

regression model, and the 12 quarter average outperformed the DSYR model

in MAE and minimum absolute error. Like the PACAF MSC results, the full

multivariable network was the only network that outperformed the DSXR

model in every category.

Figure 54 shows the rank order of the full multivariable network,

reduced multivariable network, multiple regression, time series network,

and the DSXR simple regression in terms of MAE, minimum absolute error,

and maximum absolute error for the PACAF and USAFE MAC tonnage data sets.

For the PACAF MAC data set, the time series network achieved the lowest

MAE, but all three networks achieved comparable MAE's and minimum and
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maximum absolute errors. All the models outperformed the DSXR model in

every category.

Similar to the PACAF MSC results, the full multivariable network

outperformed all other models in every category for the USAFE MAC data

set. The time series network also performed very well while the reduced

multivariable network and the multiple regression model achieved similar

forecasting accuracy.

MAC

17 PACAF -I -USAFE
MIN MAX AVE MIN MAX AVE

MODEL MAE ERR ERR RANK MAE ERR ERR RANK

Full Multivariable Network 2 1 3 2.0 1 1 1 1.0

Reduced Multivariable Network 3 3 2 2.7 4 4 2 3.3

Time Series Network 1 2 1 1.3 2 2 3 2.3

Multiple Regression 4 4 4 4.0 3 3 4 3.3

DSXR Simple Regression 5 5 5 5.0 5 5 5 -.

Figure 54. PACAF and USAFE MAC Model Rank Order

Research Objective 2. The second objective of this research was to

determine whether the multiple regression models or the neural network

models were statistically more accurate. Compared to the full

multivariable networks, the multiple regression models were less accurate

in terms of MAE, minimum absolute error, and maximum absolute error for

all the data sets except for the USAFE MSC data set. The multiple

regression model had a lower MAE (4113) and minimum absolute error (652)

for the USAFE MSC data set compared to the full multivariable network

(MAE = 4940, minimum absolute error = 1474).
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In comparison to the reduced multivariable networks, the multiple

regression models performed with similar forecasting accuracy for the

PACAF and USAFE MSC data sets and the USAFE MAC data set. For the PACAF

data set, the reduced multivariable network significantly outperformed

the multivariable network in every category (71% reduction in MAE, 88%

reduction in minimum absolute error, 54% reduction in maximum absolute

error). Overall, the multiple regression and the reduced multivariable

networks achieved relatively comparable forecasting accuracy.

Findings

Multivariable Model Approach. The multivariable model development

approach was based on the breakout of the total flying hour variable and

the addition of the military population variables. The approach appears

to increase forecasting accuracy compared to DSXR's simple regression

technique. As illustrated in Figures 51 and 52, the full multivariable

network outperformed the DSXR simple linear regression model in every

category and for all the data sets. The reduced multivariable network

and the multiple regression model outperformed the DSXR simple regression

model in every category of the PACAF and USAFE MAC data sets and in MAE

and minimum absolute error for the USAFE MSC data set.

A potential problem with the multivariable approach was discovered

with the PACAF MSC data set. The DSXR model outperformed the multiple

regression and reduced multivariable network in MAE (33% reduction

compared to the multiple regression MAE and a 22% reduction compared to

the reduced multivariable network MAE) and minimum absolute error. The

reduced multivariable network and the multiple regression model :uittered

from extrapolation problems and significantly overestimated three out of
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the six forecast periods (three of six forecasts were based on officer

population values which were outside the data set that was used to

develop the models).

There seems to be a tradeoff between a small data set and the

extrapolation problem. In order to model the current relationships

between SDT tonnage and the aircraft flying hours and military

populations, the data sets that were used to develop the models were

small (14 quarters). With a small data set, the potential of forecasting

with variables outside of the data set (extrapolation) is significant.

When extrapolation is encountered, the forecasts may have to be

subjectively altered or the data set may have to be increased (it

possible) so that no variables fall outside of the data set that was used

to develop the model.

Unlike the reduced network and multiple regression model, the PACAF

MSC full multivariable network did not suffer from extrapolation

problems. The PACAF MSC full multivariable network used nine independent

variables in contrast to the three variables used for the reduced network

and the multiple regression model. This means the full multivariable

network forecasts were based on six additional independent variables

which seemed to diminish the extrapolation effect so that forecasting

accuracy was not degraded with two of nine independent variables falling

outside the data set.

Aircraft Flying Hour Variables. Table 38 shows the aircraft flying

hour variables that were used in the multiple regression models. The '+'

and '-' sign indicate the direction of the variable coefficient. The

DSXR personnel believed the relationship between flying hours and tonnage

requirements were not always positively correlated and that the F-16
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aircraft seemed to require less logistical support compared to other

aircraft. The apriori expectations regarding the direction of the

relationships between flying hours by type of aircraft and tonnage were

dependent on the type of aircraft.

Table 38

Multiple Regression Aircraft Variables

PACAF MSC PACAF MAC USAFE MSC USAFE MAC

+ A-10 + B-52 + C-130 + A-1O

- F-16 - F-15 + F-4

The results (Table 38) show the older aircraft (F-4, C-130, A-1O,

and the B-52) with positive coefficients which indicate SDT tonnage

requirements have been increasing (decreasing) with increased (decreased)

flying hours. The relatively newer aircraft (F-15 and F-16) have

negative coefficients which indicate SDT tonnage requirements have been

decreasing (increasing) with increased (decreased) flying hours. Figires

55 and 56 show the percentage of the total aircraft flying hours that

were flown by the F-16, F-15, F-4, and A-10 in PACAF and USAFE

respectively. In PACAF and USAFE, the percentage of F-16 flying hours

has been increasing since 1982 and has exceeded all other aircraft, but

SDT requirements have not proportionately increased. Contrary o the F-

16 flying hours, the percentage of F-4 flying hours has been decreasing

since 1982. The general trend in PACAF and USAFE SDT requirements is

inversely related to the increasing trend in F-16 flying hours, but

directly related to the phaseout of the F-4 aircraft. The direction ot

the relationship between aircraft flying hours depends on the time period

154



26
24/

2 22
z
208Crw

'- 16 -

( 14-

12-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

010

8r

82 83 8', 8 516 87 88 89
FISCAL YEAR

--- F- 16 ---- F- 15 E3 F-A --- A- 10

Figure 55. PACAF Aircraft Flying Hours by Percent

2826
^24-

z 22.
u 20 -
LJ18-

1" 1 6
~14-
~12-

' 0

C!)

2,

0 82 83 a4 85 8'6 87 88 8'9
FISCAL YEAR

16----15 - -r- -- A- 1

Figure 56. USAFE Air'ratt Flying Hours by Percent

155



which is directly related to the stage of the aircraft's life cycle.

With the completion of the phaseout of the F-4, the relationship between

tonnage and F-16 and F-15 flying hours should change.

Military Population Variables. The military population variables

significantly contributed to improving forecasting accuracy. Every

multiple regression model that was developed contained at least one

military population variable that was statistically significant. Table

39 shows the military population variables (officer manpower (OFF) and

airman manpower (ANN)) that were used in the multiple regression models.

A 'Yes' indicates the variable was used in the multiple regression model,

while a 'No' indicates the variable was not used. The '+' and '-' sign

indicate the direction of the variable coefficient.

Table 39

Multiple Regression Military Population Variables

PACAF USAFE
MSC MAC MSC MAC

OFF - YES NO - YES + YES

AMN NO - YES NO - YES

The apriori relationship between tonnage and military population was

expected to be positively correlated. An increased (decreased) military

population should require increased (decreased) SDT tonnage requirements,

but this was not the case. For the PACAF and USAFE MSC data sets, the

coefficients for the officer population variables were negative. From

1981 to 1986, the PACAF and USAFE officer manpower strength had been

increasing, but since 1987, the officer strength appears to be
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increasing, but since 1987, the officer strength appears to be

decreasing. The residual analysis indicated a nonlinear relationship

between tonnage and officer population. Second order regression models

were developed by adding a squared officer population variable which

improved the fit compared to the first order regression models, but did

not improve forecasting accuracy. The second order relationship between

tonnage and officer population was a positive nonlinear relationship

(officer variable (OFF) was positive while the squared officer variable

(SOFF) was negative). An increased (decreased) officer population

required an increased (decreased) SDT tonnage requirements, but at a

nonlinear decreasing (increasing) rate.

For the PACAF and USAFE MAC data sets, the coefficients for the

airman population variables were also negative. Unlike the PACAF and

USAFE MSC multiple regression models, these models did not require higher

order terms to improve fit.

The military population variables could be measuring some other

phenomena or interacting with other variables that affect SDT tonnage

requirements. For example, the phaseout of the F-4 can be measured by a

reduction in manpower requirements, but SDT requirements will increase or

decrease depending on the activity level of the other remaining aircraft.

Another example is the two level maintenance concept which is based on

reducing manpower requirements. When it is initiated, manpower

requirements should decrease, but SDT requirements will probably

increase. The military manpower variables may change their direction of

relationship with SDT tonnage depending on the fiscal year, manpower

buildups and reductions and other phenomena, but the variables appear to

contribute to improving forecasting accuracy.
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Financial Impicatins. The objective for improving SDT forecasting

accuracy is to minimize the financial implicati-.s resulting from SDT

overestimations and underestimations. Overestimations divert scarce

funds from other programs while underestimations degrade logistical

support capability.

Figure 40 shows the cost per measurement ton (MSC) and cost per

short ton (MAC) for fiscal years 1988, 1989, and 1990. These values were

used to calculate the over/underestimations for each of the models in

dollars (Figure 41). For the MSC data, the total over/underestimations

for each model is the six quarter forecast period (FY 1988/3 to 1989/4)

based on FY 1938 and 1989 cost per measurement ton values. For the MAC

data, the total over/underestimations for each model is the five quarter

forecast period (FY 1989/1 to 1990/1) based on FY 1989 and 1990 cost per

ton values. The 'Difference' entry for each model shows ;he total

reduction in over/undere-timazions compared to the DSXR model. The PACAF

MSC reduced multivariable network and multiple regression model were the

only models that did not reduce the total over/underestimations (figures

are in parentheses in Table 41) compared to the DSXR model because of the

overestimations resulting from the extrapolation problems.

Table 42 shows the total difference in over/underestimations for

each model compared to the DSXR model. The largest difference was

realized by the full multivariable network model and most of the

difference came from the MAC data (S35.7 million) compared to the MSC

data (Sl.3 million). The MAC difference was large because the DSXR MAC

models suffered from a lack of an intervention term and substantially

overestimated the forecasts. The multiple regression models also

achieved substantial difference (S24.6 million).
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Table 40

Overseas SDT Costs (Dc, )

PACAF USAFE
Fiscal Year mSC' MAC" MSC* MAC-

1988 45.43 2,208.00 51.64 1,483.00

1989 73.12 2,519.00 87.13 1,547.00

1990 82.19 2,463.00 91.96 1,694.00

Cost per measurement ton Cost per short ton

Table 41

Financial Implications (Dollars)

PACAF USAFE
MSC MAC MSC MAC

DSXR Models
Underestimations: 903,672 0 2,234,247 982,345
Overestimations: 44,238 19,146,234 1,260,335 19,990,054
Total: 947,909 19,146,234 3,494,582 20,972,399

Full Networks
onderestimations: 639,339 2,351,501 696,006 1,664.572

Overestimations: 219,509 123,431 1,522,380 186,858
Total: 858,847 2,474,932 2,218,386 1,851,430
Difference: 89,062 16,671,302 1,276,197 19,120,969

Reduced Networks
Underestimations: 358,655 3,016,294 1,501,847 1,656.837
Overestimations: 1,462,003 118,393 391.305 4,195,4'36
Total: 1,820,661 3,134,687 1,893,152 5.852,273
Difference: (872,752) 16,011,547 1,601,430 15,120,12t)

Time Series Networks
Underestimations: na 1,480.435 na 2,817,087
Ove rest imat ions : fio 199,001 no 1 11, 9,80
Total: na 1,o79 436 na 3,46, 1)7
Di f f rerice : n,- 17,466,79H ro 17,536,212

liltiple Regrfssions
(?rido.rcst imati ois : 3 9" 1 , t 5 8 1 o, ()t)5, 81#,) 1 ,254,88H .1H 1,9ill

Overost imai iois: 1 ,122, 2112 ) it), 2mi 1, 2'9'), 581
Totol: 1 ,715,00( 1 ,o5, 49 2,1091.171 q.11I.12(1
0i t f I'r 1'( w ( 767,, ) , /# ()1 3,41 ) 15, w,) .27 (j

----------- ---- ---- --- ---- ---- --- ---- ---- --- ---- ---5- --



Table 42

Total Difference in Underestimations and Overestimations (Dollars)

MAC MSC Total

Full Network Model: 35,792,271 1,365,258 37,157,529

Time Series Model: 35,003,030 na 35,003,030

Reduced Network Model: 31,131,673 728,678 31,860,351

Multiple Regression Model: 24,041,664 635,420 24,677,084

Programmed versus Actual Flying Hours. DSXR produces forecasts with

the simple regression models that were developed from historical tonnage

and flying hour data by computing future tonnage requirements with

programmed aircraft flying hour data. The forecasting accuracy of any

model using the total flying hour variable or the flying hours by type of

aircraft is not altered if the difference between programmed and actual

flying hours is negligible and the model accurately describes the

relationship between SDT tonnage and flying hours. Table 43 shows the

PACAF and USAFE programmed and actual flying hours from FY 1988/3 to FY

1990/1. In 11 out of 14 cases, the programmed flying hours were

overestimated. The financial overestimations and underestimations of the

DSXR PACAF and USAFE MSC and MAC models using actual flying hours were

compared to the same models using programmed flying hours (Table 44).

Table 44 shows how the use of the programmed flying hours actually

improved forecasting accuracy for the MSC data (S708,244 savings), but

significantly degraded DSXR MAC forecasting accuracy ($15,346,060 loss in

over/underestimations). The forecasting accuracy of the multivariable

models (full and reduced multivariable networks ind the multiple

regressions) will be altered to some extent it the programmed flying

160



hours are different from the actual flying hours. The time series

networks and the 12 quarter averages are not affected by the

discrepancies between programmed and actual flying hours.

Table 43

Programmed and Actual Flying Hours

PACAF USAFE
Programmed Actual Programmed Actual

Flying Flying Flying Flying
FYjjtr Hours Hours Difference Hours Hours Difference
1988/3 46252 41724 4528 79529 74331 5198

4 38962 38897 65 80236 74752 5484
1989/1 42735 40676 2059 81012 68136 12876

2 42727 41960 767 81105 74136 6969
3 42183 42353 -170 81489 85631 -4142
4 42555 36584 5971 82321 83012 -691

1990/1 39677 36672 3005 78407 68417 9990

Table 44

Programmed Flying Hours and Actual Flying Hours
Financial Implications (Dollars)

PACAF USAFE
MSC MAC NSC MAC

DSXR Model with
Actual Flying Hours:
Underestimations: 903,672 0 2,234,247 982,345
Overestimations: 44,238 19,146,234 1,260,335 19,990,054
Total: 947,909 19,146,234 3,494,582 20,972,399

DSXR Model with
Programmed FlyiingHours-
Underestimations: 346,853 0 1,130,556 0
Overestimations: 438,777 27,163,362 1,818,061 28,301,331
Total: 785,630 27,163,362 2,948,618 28,301,331

Ditference: (162,279) 8,017,128 (545,965) 7,328.932

Neural Network Findings. Thv nuril network models have some

ad,.vantages over corventional torecarlsting te:hniques. The iumber or
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network training iterations can determine the strength of the

relationship between the independent variables (inputs) and dependent

variables (outputs). Networks can be thought of as adaptable reactive

systems in which the number of training iterations determine how much of

the variation in the dependent variable is modeled or explained by the

independent variables. The problem is determining the optimum number of

training iterations for a particular application. This is the same as

the problems of undertraining and overtraining a network. Forecasting

accuracy can be degraded when a network's R2 value is too high

(overtraining) or too low (undertraining). In this research, all of the

networks made rapid progress (achieved significant increases in R2 value)

between 0 and 2000 training iterations. The R2 value began to plateau

after 1500 - 2000 training iterations and training beyond this point

resulted in small increases in the R2 value. A training heuristic that

was used in this research was to continue training the networks beyond

the 1500 - 2000 iteration range until the R2 value increased at least

another .05. All the networks (except for the time series networks and

the USAFE MAC full multivariable network) required an additional 2000 -

2500 training iterations and training was terminated at 4000 iterations.

The time series networks and the USAFE MAC full multivariable network

were 'slower' in adjusting their weights compared to the other networks

and required significantly more training iterations to increase the R2

value.

Unlike regression analysis which fits one line or hyperplane to the

data that minimizes the sum of squared error, the networks can produce an

unlimited number of lines or hyperplanes which can be controlled through

the number of hidden nodes the network uses. Depending on the number of
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hidden nodes arid the numbe: of training iterations, networks can achieve

near 100% learning convergence which means the change in the dependent

variables is completely explained or caused by a change in the

independent variables. This is similar to a regression model achieving

an R2 value of 1. This would be useful for problems where all the

variables are known and the data is not distorted or noisy (no

unexplained or random error).

Usually the opposite is true, the problem lacks many of the required

variables or the relationship between the variables is not well defined.

This type of data is distorted and noisy (large amount of unexplained

error and random error). In this case, it is important not to model the

noise or distortions in the dependent variable with the independent

variables. A model that shapes a line or hyperplane that minimizes the

sum of squared error between the variables may not be appropriate for

this type of data. By varying the form and size of a network, a

researcher can make the network less reactive to the data. This is

similar to the principles of exponential smoothing where the a value

determines the degree of smoothing. Low a values give considerable

smoothing while high a values make the model more reactive to the

historical data. For a network, a small number of hidden nodes causes

the network to filter out or smooth most of the distortions while the

prominent features or relationships are modeled or explained. Increasing

the number of hidden nodes increases the degree to which the model

extracts the mathematical relationships between the independent and

dependent variables.
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Future Research

Neural Networks. Although some experimentation was required to

develop the networks used in this research, more experimentation is

needed to find alternate network configurations and training algorithms

that can improve forecasting capability.

The back-propagation network was used in this research, but other

networks such as the Kohonen networks may be capable of producing more

accurate forecasts. The Kohonen networks can be used as time series

forecasting models similar to the back-propagation networks developed for

the hAC data sets.

Combined Forecasting Techniques. Time series, simple averages,

simple and multiple regressions, and neural network forecasting

techniques all have particular strengths and weaknesses and a combination

of the forecasts produced by several of these models may improve

forecasting accuracy. Prior research from a variety of other

applications has indicated the technique of combining forecasts increases

forecasting accuracy, but experimentation may be required to find the

correct combination of forecasting models (2:183-186). For example, a

simple combined forecasting technique was developed by combining the

forecasts based on a 20 quarter average of the ratio between tonnage and

flying hours and a 14 quarter average of the tonnage. The forecasts

produced by this combined technique were more accurate than the forecasts

produced by each of the separate techniques and more accurate than the

DSXR simple regression forecasts.

Inventory Models. DSXR has been traditionally using models that

rely on the flying hour program, but some experimental multiple

regression models were developed in this research that used aircraft
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inventory levels. These models were similar to the multiple regression

models using flying hours and had comparable forecasting accuracy. A

combination of the two techniques may improve forecasting accuracy.
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Appendix A: DSXR PACAF MSC Model SAS Regression Otput

DEP VARIABLE: TON
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 1 339797123.86 339797123.86 9.511 0.0042
ERROR 32 1143223160 35725723.76
C TOTAL 33 1483020284

ROOT MSE 5977.1 R-SQUARE 0.2291
DEP MEAN 41325.85 ADJ R-SQ 0.2050
C.V. 14.46334

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > :T

INTERCEP 1 -3382.12 14532.78074 -0.233 0.8175
FH 1 1.13325080 0.36745715 3.084 0.0042

PREDICT STD ERR LOWER95% UPPER95% LOWER95% UPPER95
OBS ACTUAL VALUE PREDICT MEAN MEAN PREDICT PREDICT

1 33145.0 36986.5 1740.8 33440.6 40532.5 24305.8 49667.2
2 30312.0 39004.9 1271.7 36414.6 41595.1 26557.5 51452.2
3 35918.0 37565.6 1592.9 34321.0 40810.2 24965.8 50165.4
4 32220.0 35634.6 2111.0 31334.7 39934.5 22722.7 48546.5
5 35198.0 37682.4 1564.1 34496.4 40868.3 25097.5 50267.2
6 30649.0 36612.6 1840.2 32864.2 40360.9 23873.7 49351.4
7 35193.0 37958.9 1497.6 34908.5 41009.3 25407.7 50510.1
8 35396.0 38228.6 1435.0 35305.5 41151.7 25707.7 50749.4
9 37343.0 37634.8 1575.8 34425.0 40844.6 25043.9 50225.6
10 41379.0 38556.1 1362.8 35780.1 41332.1 26068.7 51043.4
11 43392.0 40401.0 1068.0 38225.5 42576.5 28033.3 52768.7
12 42968.0 39153.3 1243.8 36619.8 41686.8 26717.6 51589.0
13 43039.0 38880.2 1296.0 36240.4 41520.0 26422.4 51338.0
14 49651.0 41583.0 1028.4 39488.1 43677.9 29229.2 53936.8
15 46352.0 40960.8 1031.9 38859.0 43062.7 28605.9 53315.8
16 35398.0 39247.4 1226.8 36748.5 41746.2 26818.7 51676.0
17 38462.0 41968.3 1046.0 39837.7 44099.0 29608.4 54328.2
18 41800.0 42551.9 1099.5 40312.4 44791.4 30172.8 54931.1
19 48352.0 41407.3 1025.4 39318.7 43496.0 29054.6 53760.1
20 49203.0 39947.7 1118.2 37670.0 42225.5 27561.6 52333.8
21 47567.0 42856.8 1138.9 40536.9 45176.7 30462.8 55250.7
22 49835.0 42886.2 1143.1 40557.8 45214.7 30490.7 55281.8
23 59435.0 43471.0 1238.8 40947.7 45994.3 31037.4 55904.6
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PREDICT STD ERR LOWER95% UPPER95% LOWER95% UPPER95%

OBS ACTUAL VALUE PREDICT MEAN MEAN PREDICT PREDICT

24 48235.0 43061.9 1169.5 40679.8 45444.0 30656.2 55467.6

25 49040.0 45240.0 1631.4 41916.9 48563.1 32619.8 57860.2

26 40829.0 44148.7 1374.2 41349.5 46947.9 31656.2 56641.2

27 42134.0 43620.6 1266.6 41040.5 46200.6 31175.3 56065.8

28 34675.0 43502.7 1244.6 40967.6 46037.8 31066.7 55938.7

29 42681.0 46786.9 2046.0 42619.3 50954.5 33918.5 59655.3

30 39408.0 44579.3 1470.9 41583.1 47575.5 32041.2 57117.4

31 35796.0 46912.7 2081.4 42672.9 51152.4 34020.7 59804.6

32 39293.0 46142.1 1868.0 42337.0 49947.1 33386.5 58897.7

33 42387.0 43430.2 1231.4 40921.9 45938.5 30999.6 55860.8

34 48394.0 46474.1 1958.9 42483.9 50464.3 33662.0 59286.2

35 43901.6 1322.2 41208.3 46594.9 31432.4 56370.8

36 40697.9 1045.1 38569.2 42826.7 28338.4 53057.5

37 42714.0 1119.5 40433.6 44994.4 30327.4 55100.6

38 44169.1 1378.7 41360.9 46977.3 31674.5 56663.6

39 44614.4 1479.1 41601.6 47627.3 32072.3 57156.6

40 38076.7 1469.9 35082.6 41070.8 25539.1 50614.4

41 38175.3 1447.2 35227.5 41123.1 25648.7 50702.0

STD ERR STUDENT COOK'S

OBS RESIDUAL RESIDUAL RESIDUAL -2 -1 0 1 2 D

1 -3841.5 5718.0 -.671835 0.021

2 -8692.9 5840.3 -1.4884 I 0.053

3 -1647.6 5760.9 -0.286 0.003

4 -3414.6 5591.9 -.610626 0.027

5 -2484.4 5768.8 -.430652 0.007

6 -5963.6 5686.8 -1.0487 0.058

7 -2765.9 5786.5 -0.47799 0.008

8 -2832.6 5802.3 -.488184 0.007

9 -291.76 5765.6 -.050602 0.000

10 2822.9 5819.7 0.4851 0.006

11 2991.0 5880.9 0.5086 0.004

12 3814.7 5846.3 0.6525 i 0.010

13 4158.8 5834.9 0.7127 a 0.013

14 8068.0 5888.0 1.3703 a 0.029

15 5391.2 5887.4 0.9157 i 0.013

16 -3849.4 5849.9 -.658029 a 0.010

17 -3506.3 5884.9 -.595818 A 0.006
18 -751.93 5875.1 -.127986 0.000

19 6944.7 5888.5 1.1794 0.021

20 9255.3 5871.6 1.5763 a 0.045

21 4710.2 5867.6 0.8028 a 0.012

22 6948.8 5866.8 1.1844 1 0.027
23 15964.0 5847.3 2.7301 0.167

24 5173.1 5861.6 0.8825 a 0.016

25 3800.0 5750.1 0.6609 0.18

26 -3319.7 5817.0 -.570689 0.009
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STD ERR STUDENT COOK'S

OBS RESIDUAL RESIDUAL RESIDUAL -2 -1 0 1 2 D

27 -1486.6 5841.3 -.254494 0.002
28 -8827.7 5846.1 -1.51 *"0.052

29 -4105.9 5616.0 -.731106 0.035
30 -5171.3 5793.3 -.892641 * 0.026
31 -11117 5603.0 -1.9841 I 0.272

32 -6849.1 5677.7 -1.2063 * 0.079
33 -1043.2 5848.9 -.178359 0.001
34 1919.9 5647.0 0.3400 0.007
35
36
37
38
39
40
41

SUM OF RESIDUALS 2.00089E-11
SUM OF SQUARED RESIDUALS 1143223160
PREDICTED RESID SS (PRESS) 1288831249

DURBIN-WATSON D 0.655
(FOR NUMBER OF OBS.) 34
IST ORDER AUTOCORRELATION 0.664
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UNIVARIATE

VARIABLE=RESIDUAL RESIDUALS

MOMENTS

N 34 SUM WGTS 34
MEAN 5.885E-13 SUM 2.001E-11
STD DEV 5885.84 VARIANCE 34643126
SKEWNESS 0.463256 KURTOSIS 0.239901
USS 1143223 ')0 CSS 1143223160
CV 99 99 STD MEAN 1009.41
T:MEAN=O 5.830E-16 PROB>:T: 1
SGN RANK -2.5 PROB>!S: 0.972723
NUM ^= 0 34
W:NORMAL 0.97273 PROB<W 0.607

QUANTILES(DEF=4) EXTREMES

100% MAX 15964 99% 15964 LOWEST HIGHEST
75% Q3 4296.66 95% 10932.5 -11117 6944.65
50% MED -1264.9 90% 7508.38 -8827.7 6948.76
25% Qi -3843.5 10% -7771 -8692.9 8068
0% MIN -11117 5% -9400 -6849.1 9255.28

1% -11117 -5963.6 15964

RANGE 27080.7
Q3-Q1 8140.15

MODE -11117

MISSING VALUE
COUNT 7

% COUNT/NOBS 17.07
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Appendix B: DSXR USAFE MSC Model SAS Regression Output

DEP VARIABLE: TON
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 1 1200722483 1200722483 5.926 0.0207

ERROR 32 6484081098 202627534.30
C TOTAL 33 7684803580

ROOT MSE 14234.73 R-SQUARE 0.1562
DEP MEAN 70816.56 ADJ R-SQ 0.1299
C.V. 20.10085

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER=O PROB > :T:

INTERCEP 1 5192.00148 27068.71949 0.192 0.8491
FH 1 0.89342350 0.36701624 2.434 0.0207

PREDICT STD ERR LOWER95% UPPER95% LOWER95% UPPER95%
OBS ACTUAL VALUE PREDICT MEAN MEAN PREDICT PREDICT

1 42971.0 59209.3 5356.8 48297.8 70120.7 28229.1 90189.4

2 50901.0 57732.5 5903.3 45707.8 69757.1 26342.9 89122.0

3 56271.0 67494.9 2796.7 61798.2 73191.6 37945.6 97044.2
4 49844.0 66006.4 3140.7 59609.0 72403.8 36314.1 95698.8
5 53377.0 61965.5 4379.5 53044.8 70886.2 31629.2 92301.8
6 53945.0 63789.9 3780.5 56089.4 71490.3 33789.7 93790.0
7 60785.0 72433.7 2530.0 67280.3 77587.2 42984.3 101883.1
8 54941.0 72624.9 2551.8 67427.2 77822.7 43167.7 102082.1

9 55855.0 60475.3 4899.7 50495.0 70455.5 29810.7 91139.8
10 57543.0 67754.0 2746.4 62159.9 73348.1 38224.3 97283.7
11 63076.0 77535.2 3684.7 70029.7 85040.7 47584.5 107485.8
12 65851.0 75205.1 3034.8 69023.6 81386.7 45558.5 104851.7
13 91436.0 64351.8 3607.3 57004.1 71699.5 34440.3 94263.3
14 93263.0 68174.8 2671.6 62733.0 73616.6 38673.5 97676.0

15 83737.0 74545.8 2882.1 68675.2 80416.4 44962.4 104129.1

16 83617.0 74829.0 2945.6 68829.1 80828.9 45219.7 1044:38.3
17 88315.0 67271.5 2842.6 61481.4 73061.7 37704.1 96839.0

18 86968.0 70495.0 2444.8 65515.1 75474.9 41075.5 99914.5
19 101701.0 75460.7 3098.3 69149.7 81771.6 45786.8 105134.5

20 85521.0 74612.8 2896.8 68712.2 80513.4 45023.5 104202.1

21 96200.0 66862.3 2932.3 60889.5 72835.2 37258.6 06466.1

22 71083.0 67838.(J 2730.7 62275.7 73400.2 38314.3 9?7361.7

23 83702.0 79646.3 4372.3 70740.4 88552.3 40314.4 109')78.3
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PREDICT STD ERR LOWER95% UPPER95% LOWER951 UPPER95%
OBS ACTUAL VALUE PREDICT MEAN MEAN PREDICT PREDICT

24 77001.0 76539.0 3389.1 69635.8 83442.3 46733.6 106344.5
25 78732.0 72691.9 2559.9 67477.6 77906.3 43231.8 102152.1
26 80227.0 71673.4 2466.5 66649.4 76697.5 42246.4 101100.5
27 73784.0 77267.2 3603.0 69928.2 84606.2 47357.8 107176.5
28 56587.0 74546.7 2882.3 68675.7 80417.7 44963.3 104130.1
29 57977.0 72473.9 2534.4 67311.6 77636.3 43023.0 101924.9
30 64120.0 68953.8 2558.4 63742.7 74165.0 39494.3 98413.4
31 72994.0 83383.5 5710.6 71751.5 95015.5 52142.3 114624.8
32 74368.0 77853.2 3783.6 70146.4 85560.1 47851.5 107855.0
33 70603.0 72585.6 2547.1 67397.4 77773.9 43130.1 102041.1
34 70467.0 73479.9 2675.2 68030.8 78929.1 43977.3 102982.5
35 71601.1 2462.4 66585.3 76616.8 42175.4 101026.7
36 71977.2 2487.4 66910.6 77043.7 42542.9 101411.5
37 66066.3 3125.3 59700.3 72432.3 36380.7 95751.9
38 71426.8 2454.1 66428.1 76425.6 42004.1 100849.6
39 81696.7 5092.8 71323.1 92070.4 50901.9 112491.6
40 79356.9 4274.1 70650.8 88062.9 49083.0 109630.7
41 66022.5 3136.6 59633.6 72411.5 36332.0 95713.1

STD ERR STUDENT COOK'S
OBS RESIDUAL RESIDUAL RESIDUAL -2 -1 0 1 2 D

1 -16238 13188.3 -1.2313 0.125
2 -6831.5 12952.9 -.527406 0.029
3 -11224 13957.3 -0.80416 0.013
4 -16162 13883.9 -1.1641 0.035
5 -8588.5 13544.3 -.634105 0.021
6 -9844.9 13723.5 -0.71737 0.020
7 -11649 14008.1 -.831572 0.011
8 -17684 14004.1 -1.2628 0.026
9 -4620.3 13364.9 -.345701 0.008
10 -10211 13967.3 -.731064 0.010
11 -14459 13749.6 -1.0516 0.040
12 -9354.1 13907.5 -.672598 * 0.011
13 27084.2 13770.1 1.9669 0.133
14 25088.2 13981.8 1.7944 0.059
15 9191.2 13939.9 0.6593 0.009
16 8788.0 13926.6 0.6310 A 0.009
17 21043.5 13948.0 1.5087 0.047
18 16473.0 14023.2 1.1747 0.021
19 26240.3 13893.5 1.8887 0.089
20 10908.2 13936.9 0.7827 A 0.013
21 29337.7 13929.4 2.1062 AA* 0.098
22 3245.0 13970.4 0.2323 0.001
23 4055.7 13546.6 0.2994 0.005
24 461.9848 13825.4 .0334157 0.000
25 6040.1 14002.7 0.4314 0.003
26 8553.6 14019.4 0.6101 0.006
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STD ERR STUDENT COOK'S
OBS RESIDUAL RESIDUAL RESIDUAL -2 -1 0 1 2 D

27 -3483.2 13771.2 -0.25293 0.002
28 -17960 13939.9 -1.2884 0.035
29 -14497 14007.3 -1.035 0.018
30 -4833.8 14002.9 -.345202 0.002

31 -10390 13039.0 -.796802 0.061
32 -3485.2 13722.7 -.253977 0.002
33 -1982.6 14005.0 -.141565 i 0.000
34 -3012.9 13981.1 -.215501 0.001
35
36
37
38
39
40
41

SUM OF RESIDUALS -3.81988E-11
SUM OF SQUARED RESIDUALS 6484081098
PREDICTED RESID SS (PRESS) 7236550336

DURBIN-WATSON D 0.644
(FOR NUMBER OF OBS.) 34
1ST ORDER AUTOCORRELATION 0.657

176



30000 +

25000 +

20000 +

15000 +
R
E
S A

1 10000 +

U

A
L 5000 +
S

0+

-5000 +

A

-10000 +

-15000 +

-20000 +

------- +------------+-----------------------------------------------
56000 60000 64000 68000 72000 76000 N0OU

PREDICTED VALUES

Figure 61. DSXR USAFE MSC Model Residuals versus Predicted Values
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UNIVARIATE

VARIABLE=RESIDUAL RESIDUALS

MOMENTS

N 34 SUM WGTS 34
MEAN -1.123E-12 SUM -3.820E-11
STD DEV 14017.4 VARIANCE 196487306
SKEWNESS 0.72867 KURTOSIS -0.502932
USS 6484081098 CSS 6484081098
CV -99999 STD MEAN 2403.96
T:MEAN=O -4.674E-16 PROB>)T: 1
SGN RANK -27%5 PROB>;S: 0.644364
NUM ^= 0 34
W:NORMAL 0.907887 PRUB<W <.01

QUANTILES(DEF=4) EXTREMES

100% MAX 29337.7 99% 29337.7 LOWEST HIGHEST
75% Q3 8888.8 95% 27647.5 -17960 21043.5
50% MED -3484.2 90% 25664.3 -17684 25088.2
25% Q1 -10598 10% -16200 -16238 26240.3
0% MIN -17960 5% -17753 -16162 27084.2

1% -17960 -14497 29337.7
RANGE 47297.3
Q3-Q1 19486.9

MODE -17960

MISSING VALUE
COUNT 7

% COUNT/NOBS 17.07
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Appendix C: Trend and Seasonal Analys is

£PACAF, -USAFE MCand Fly in Hours)

TREND AND SEASONAL ANALYSIS

PACAF MSC TONNAGE

Actual DBQ DBQ-l DBQ-2
Variance: 49027789 51731495 44276024 1.02E+08

Index: 100% 106% 90% 209%

Trend: None None Moderate Strong
Seasonal: No Yes Yes Yes

Diffs First Second

Between Diffs Diffs
Actual Same Qtr. Between Between

Year Qtr Data Each Yr. Diffs Diffs

1978 1 31163

2 30967

3 32924

4 32018
1979 1 33469 2306

2 30548 -419 -2725
3 33046 122 541 3266

4 34991 2973 2851 2310

1980 1 33145 -324 -3297 -6148
2 30312 -236 88 3385
3 35818 2772 3008 2920

4 32220 -2771 -5543 -8551

1981 1 35198 2053 4824 10367
2 30649 337 -1716 -6540
3 35193 -625 -962 754
4 35396 3176 3801 4763

1982 1 37343 2145 -1031 -4832
2 41379 10730 8585 9616
3 43392 8199 -2531 -11116
4 42968 7572 -627 1904

1983 1 43039 5696 -1876 -1249
2 49651 8272 2576 4452
3 46352 2960 -5312 -7888

4 35398 -7570 -10530 -5218

1984 1 38462 -4577 2993 13523
2 41800 -7851 -3274 -6267
3 48352 2000 9851 13125

4 49203 13805 11805 1954

1985 1 47567 9105 -4700 -16505
2 49835 8035 -1070 3630
3 59435 11083 3048 4118
4 48235 -968 -12051 -15099
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1986 1 49040 1473 2441 14492

2 40829 -9006 -10479 -12920

3 42134 -17301 -8295 2184

4 34675 -13560 3741 12036

1987 1 42681 -6359 7201 3460

2 39408 -1421 4938 -2263

3 35796 -6338 -4917 -9855

4 39293 4618 10956 15873

1988 1 42387 -294 -4912 -15868

2 48394 8986 9280 14192

3 55113 19317 10331 1051

4 42250 2957 -16360 -26691

1989 1 43079 692 -2265 1409)5

2 45086 -3308 -4000 -1735

3 44009 -11104 -7796 -3796
4 41224 -1026 10078 17R74
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TREND AND SEASONAL ANALYSIS
PACAF FLYING HOURS

Actual DBQ DBQ-1 DBQ-2

Variance: 8267635 2701221 4219453 12887688
Index: 100% 33% 51% 156%

Trend: None None Moderate Strong
Seasonal: No Yes Yes Yes

Diffs First Second
Between Diffs Diffs

Actual Same Qtr. Between Between
Year Qtr Data Each Yr. Ditfs Difs

1978 1 35287
2 37575
3 34865
4 35922

1979 1 35310 23
2 37593 18 -5
3 35600 735 717 722

4 35615 -307 -1042 -1759

1Q80 1 35622 312 619 1661

2 37403 -190 -502 -1121
3 36133 533 723 1225

4 34429 -1186 -1719 -2442

1981 1 36236 614 1800 3519

2 35292 -2111 -2725 -4525
3 36480 347 2458 5183
4 36718 2289 1942 -516

1982 1 36194 -'42 -2331 -4273

2 37007 1715 1757 4088
3 38635 2155 440 -1317
4 37534 816 -1339 -177)

1983 1 37293 1099 283 1622

2 39678 2671 1572 1289
3 39129 494 -2177 -3749

4 37617 83 -411 1760

1984 1 40018 2725 2642 3053
2 40533 855 -1870 -4512

3 39523 394 -'461 1409
4 38235 618 224 o85

1985 1 40802 784 166 -58

2 10828 295 -489 -655
41344 1821 1520 2015

4 40983 2748 927 -599

1986 1 42905 2103 -645 -1572
2 41942 114 -989 -344
3 /11470 I 32 -982 7
4 41372 38 257 12,39

14



1987 1 44270 1365 97 b 719
2 42322 380 -985 -1961
3 44381 2905 2525 3510
4 43701 2329 -576 -3101

1988 1 41308 -2962 -5291 -4715
2 43994 1672 4634 9925
3 41724 -2657 -4329 -8963
4 38897 -48C,4 -2147 2182

1989 1 40676 -632 4172 6319
2 41960 -2034 -1402 -5574
3 42353 629 2663 4065
4 36584 -2313 -2942 -5605
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TREND AND SEASONAL ANALYSIS
USAFE MSC TONNAGE

Actual DBQ DBQ-1 DBQ-2
Variance: 2.84E+08 1.69E+08 1.45E+08 3.56E+08
Index: 100% 60% 51% 126%

Trend: None None Moderate Strong
Seasonal: No Yes Yes Yes

Diffs First Second
Between Diffs Diffs

Actual Same Qtr. Between Between
Year Qtr Data Each Yr. Diffs Diffs

1978 1 46778
2 38450
3 47078
4 37450

1979 1 48574 1796
2 44156 5706 3910
3 44041 -3037 -8743 -12653
4 44296 6846 9883 18626

1980 1 42971 -5603 -12449 -22332
2 50901 6745 12348 24797
3 56271 12230 5485 -6863
4 49844 5548 -6682 -12167

1981 1 53377 10406 4858 11540
2 53945 3044 -7362 -12220
3 60785 4514 1470 8832
4 54941 5097 583 -887

1982 1 55855 2478 -2619 -3202
2 57543 3598 1120 3739
3 63076 2291 -1307 -2427
4 65851 10910 8619 9926

1983 1 91436 35581 24671 16052
2 93263 35720 139 -24532
3 83737 20661 -15059 -15198
4 83617 17766 -2895 12164

1984 1 88315 -3121 -20887 -17992
2 86968 -6295 -3174 17713
3 101701 17964 24259 27433

4 85521 1904 -16060 -40319
1985 1 96200 7885 5981 22041

2 71083 -15885 -23770 -29751
3 83702 -17999 -2114 21656
4 77001 -8520 9479 11593

1986 1 75830 -20370 -11850 -21329
2 79563 8480 28850 40700
3 71583 -12119 -20599 -49449
4 55248 -21753 -9634 10965
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1987 1 57088 -18742 3011 12645
2 63014 -16549 2193 -818
3 68675 -2908 13641 11448
4 69487 14239 17147 3506

1988 1 70569 13481 -758 -17905
2 70459 7445 -6036 -5278
3 81479 12804 5359 11395
4 76619 7132 -5672 -11031

1989 1 73847 3278 -3854 1818
2 63853 -6606 -9884 -6030
3 74806 -6673 -67 9817
4 88613 11994 18667 18734
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TREND AND SEASONAL ANALYSIS
USAFE FLYING HOURS

Actual DBQ DBQ-1 DBQ-2
Variance: 65769669 22106275 29956505 78090643
Index: 100% 34% 46% 119%

Trend: None None Moderate Strong
Seasonal: No Yes Yes Yes

Diffs First Second
Between Diffs Diffs

Actual Same Qtr. Between Between
Year Qtr Data Each Yr. Diffs Diffs

1978 1 57480
2 52034

3 64399
4 69807

1979 1 55423 -2057
2 56900 4866 6923
3 71221 6822 1956 -4967
4 71846 2039 -4783 -6739

1980 1 60461 5038" 2999 7782
2 58808 1908 -3130 -6129
3 69735 -1486 -3394 -264
4 68069 -3777 -2291 1103

1981 1 63546 3085 6862 9153
2 65588 6780 3695 -3167
3 75263 5528 -1252 -4947
4 75477 7408 1880 3132

1982 1 61878 -1668 -9076 -10956
2 70025 4437 6105 15181
3 80973 5710 1273 -4832
4 78365 2888 -2822 -4095

1983 1 66217 4339 1451 4273
2 70496 471 -3868 -5319
3 77627 -3346 -3817 51
4 77944 -421 2925 6742

1984 1 69485 3268 3689 764
2 73093 2597 -671 -4360
3 78651 1024 -1573 -902
4 77702 -242 -1266 307

1985 1 69027 -458 -216 1050
2 70119 -2974 -2516 -2300
3 83336 4685 7659 10175
4 79858 2156 -2529 -10188

1986 1 75552 6525 4369 6898
2 74412 4293 -2232 -6601
3 80673 -2663 -6956 -4724
4 77628 -2230 433 7389
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1987 1 75308 -244 1986 1553
2 71368 -3044 -2800 -4786
3 87519 6846 9890 12690
4 81329 3701 -3145 -13035

1988 1 75433 125 -3576 -431
2 76434 5066 4941 8517
3 74331 -13188 -18254 -23195
4 74752 -6577 6611 24865

1989 1 68136 -7297 -720 -7331
2 74152 -2282 5015 5735
3 85631 11300 13582 8567
4 83012 8260 -3040 -16622
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Appendix D: Time Series Analysis (PACAF and USAFE MSC

ARIMA Procedure

Name of variable = PACAF MSC.

Mean of working series = 39621.55
Standard deviation = 6929.082
Number of observations = 42

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 48012179 1.00000 ***

1 35649549 0.74251 I***********

2 30163492 0.62825

3 24096312 0.50188 *
4 22964186 0.47830 ** *
5 16605674 0.34586 *
6 11711346 0.24392 I****
7 9810391 0.20433 *

8 10977211 0.22863 .**

9 12790763 0.26641 .**

10 12114561 0.25232 *

11 10597599 0.22073 .****

12 4469521 0.09309 *

13 -1096447 -0.02284 .

14 -3893742 -0.08110 ***

15 -6897490 -0.14366 . *

16 -13755892 -0.28651 . *

17 -17785147 -0.37043 **.

18 -15887078 -0.33090 *
19 -13473166 -0.28062 *

20 -11830748 -0.24641 .**

21 -15205155 -0.31669 .**

22 -10811710 -0.22519 . *****

23 -10514095 -0.21899 . *

24 -11463170 -0.23876 .

marks two standard errors
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Inverse Autocorrelations

Lag Correlation -I 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 -0.24423
2 -0.20589 *
3 0.06277
4 -0.23921 *
5 0.02186
6 0.12740
7 0.08979 **

8 0.01716
9 -0.09046
10 0.00491
11 -0.09979 t
12 -0.05500 1
13 0.17202
14 -0.01930
15 -0.13686
16 0.13080
17 0.02136
18 -0.01801
19 0.03337 *
20 -0.12660 *
21 0.08992 1

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 01 2 3 4 5 6 7 8 9 1
1 0.74251
2 0.17145
3 -0.02738 *
4 0.15907
5 -0.16773
6 -0.09245 *
7 0.10488 **

8 0.12153
9 0.15075 .**

10 0.00043
11 -0.08434 . *
12 -0.32117
13 -0.26436 .

14 0.04262
15 0.03411
16 -0.16879
17 -0.07732 .

18 0.06600 .

19 -0.04001 :

20 0.05647 A

21 -0.15255 A*A

22 0.22454 I*.
23 0.00155
24 -0.15186 *. A
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Autocorrelation Check for White Noise

TO Chi Autocorrelations
Lag Square DF Prob
6 75.17 6 0.000 0.743 0.628 0.502 0.478 0.346 0.244
12 91.31 12 0.000 0.204 0.229 0.266 0.252 0.221 0.093
18 117.60 18 0.000 -0.023 -0.081 -0.144 -0.287 -0.370 -0.331
24 153.05 24 0.000 -0.281 -0.246 -0.317 -0.225 -0.219 -0.239
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Name of variable = USAFE MSC.

Mean of working series = 65243.88

Standard deviation = 17126.54
Number of observations = 42

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0 293318259 1.00000
1 250017831 0.85238
2 232369070 0.79221 *
3 198721019 0.67749 *
4 180762031 0.61627 *

5 161784695 0.55157 *

6 143576754 0.48949 ***
7 109525766 0.37340 *******
8 76362399 0.26034 ***
9 33396978 0.11386 .*

10 23002501 0.07842 **

11 670556 0.00229
12 -15954055 -0.05439 .

13 -39300605 -0.13399 . *
14 -61085526 -0.20826 ***
15 -83071293 -0.28321 .**

16 -86472888 -0.29481 ***
17 -100132721 -0.34138 . *

18 -105977923 -0.36131 . .

19 -115554891 -0.39396 ***
20 -120942731 -0.41233 ***
21 -115437213 -0.39356 .* *
22 -108146557 -0.36870 *******

23 -105077075 -0.35824 .**

24 -92430423 -0.31512 *
" marks two standard errors

193



Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 01 2 3 4 5 6 7 8 9 1
1 -0.27127 .

2 -0.35492 ****A*i

3 0.09219
4 0.03951 .

5 0.08011 i
6 0.03184 .

7 -0.28483
8 -0.04015
9 0.41005
10 -0.14428 1
11 -0.06951 .

12 0.00926
13 -0.04163
14 0.05883 *
15 0.09758 *

16 -0.19514
17 0.02536
18 0.11366
19 -0.06173 .

20 0.04426
21 -0.02859

Partial Autocorrelations

Lag Correlation -i 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.85238 *AA*A*A*AAA*A
2 0.24012
3 -0.15638
4 0.05903 A

5 0.04609
6 -0.05177 *

7 -0.25197 .

8 -0.15993 AA

9 -0.20564 .

10 0.24457 .

11 -0.01919
12 -0.15676 *

13 -0.04754 1
14 -0.00218
15 -0.05848 *

16 0.06489
17 -0.16316 *A'

18 -0.12883
19 0.13620
20 -0.01342
21 0.06167
22 0.00602
23 -0.15598 *AA

24 0.11762 .
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ARIMA Procedure

Autocorrelation Check for White Noise

To Chi Autocorrelations
Lag Square DF Prob

6 129.46 6 0.000 0.852 0.792 0.677 0.616 0.552 0.489
12 141.77 12 0.000 0.373 0.260 0.114 0.078 0.002 -0.054
18 176.11 18 0.000 -0.134 -0.208 -0.283 -0.295 -0.341 -0.361
24 251.72 24 0.000 -0.394 -0.412 -0.394 -0.369 -0.358 -0.315
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Appendix E: Business Cycle Analysis (PACAF and USAFE MSC)

PACAF USAFE PACAF USAFE
PACAF USAFE 1/4 1/4 4-QTR 4-QTR

Year Qtr mSC mSC RATIO RATIO TOTAL TOTAL

1978 i 31163 46778
2 30967 38450
3 32924 47078
4 32018 37450 127072 169756

1979 1 33469 48574 107 104 129378 171552
2 30548 44156 99 115 128959 177258
3 33046 44041 100 94 129081 174221
4 34991 44296 109 118 132054 181067

1980 1 33145 42971 99 88 131730 175464
2 30312 50901 99 115 131494 182209
3 35818 56271 108 128 134266 194439
4 32220 49844 92 113 131495 199987

1981 1 35198 53377 106 124 133548 210393
2 30649 53945 101 106 133885 213437
3 35193 60785 98 108 133260 217951
4 35396 54941 110 110 136436 223048

1982 1 37343 55855 106 105 138581 225526
2 41379 57543 135 107 149311 229124
3 43392 63076 123 104 157510 231415
4 42968 65851 121 120 165082 242325

1983 1 43039 91436 115 164 170778 277906
2 49651 93263 120 162 179050 313626
3 46352 83737 107 133 182010 334287
4 35398 83617 82 127 174440 352053

1984 1 38462 88315 89 97 169863 348932
2 41800 86968 84 93 162012 342637
3 48352 101701 104 121 164012 360601
4 49203 85521 139 102 177817 362505

1985 1 47567 96200 124 109 186922 370390
2 49835 71083 119 82 194957 354505
3 59435 83702 123 82 206040 336506

4 48235 77001 98 90 205072 327986
1986 1 49040 75830 103 79 206545 307616

2 40829 79563 82 112 197539 316096
3 42134 71583 71 86 180238 303977
4 34675 55248 72 72 166678 282224

1987 1 42681 57088 87 75 160319 263482
2 39408 63014 97 79 158898 246933
3 35796 68675 85 96 152560 244025
4 39293 69487 113 126 157178 258264

1988 1 42387 70569 99 124 156884 271745
2 48394 70459 123 112 165870 279190
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PACAF USAFE
4/4 4/4

Year Qtr RATIO RATIO

1978 1
2
3
4

1979 1
2
3
4 104 107

1980 1 102 102
2 102 103
3 104 112
4 100 110

1981 1 101 120
2 102 117
3 99 112
4 104 112

1982 1 104 107
2 112 107
3 118 106
4 121 109

1983 1 123 123
2 120 137
3 116 144
4 106 145

1984 1 99 126
2 90 109
3 90 108
4 102 103

1985 1 110 106
2 120 103
3 126 93
4 115 90

1986 1 110 83
2 101 89
3 87 90
4 81 86

1987 1 78 86
2 80 78
3 85 80

4 94 92
1988 1 98 103

2 104 113

Ip)7



Appendix F: PACAF and USAFE Military Populations

PACAF USAFE

YEAR OFFICER AIRMAN OFFICER AIRMAN

1981 5340 14635 9468 28394
1982 5537 na" 9515 na*
1983 5671 15405 9935 28432
1984 5836 15338 10025 28610
1985 5907 15417 10312 28470
1986 5995 15385 10354 28271
1987 5976 15503 10272 28090
1988 5806 15664 10004 27951
1989 5727 15579 10110 28346

data not available.

198



Appendix G: PACAF Aircraft Flying Hours and Inventory_by MD

FISCAL YEAR: 1985

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr
MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS.

AO0 26 2601.5 26 2505.3 25 2856.1 25 2405.1
A037 13 1087.9 13 977.9 13 364.2 0 2.0
B052 12 1482.6 12 1696.4 12 1586.3 12 1394.4
C009 811.2 745.7 813.8 7.4.3
C012 1 162.5 1398.8 1156.0 1123.9
C021 0.0 488.9 396.2 417.4
C130 40 8118.6 40 7564.5 40 8017.5 40 8597.2
C135 33 4607.9 33 4220.9 33 4227.8 33 4184.7
E003 0 0.0 0 0.0 1 420.5 1 639.1
F004 92 6087.2 89 6164.3 91 5976.0 73 5020.5
FO05 12 781.8 12 879.2 12 803.7 12 766.3
FOI5 70 5667.7 71 5252.0 70 5617.0 70 5221.3
F016 50 4027.5 50 4224.8 51 4438.2 59 5485.9
HO0W 2 145.6 1 130.8 2 143.9 2 179.7
H003 13 1827.6 13 1727.4 13 1631.5 13 1536.9
T033 13 1077.5 14 1138.8 14 1142.7 14 1012.0
T039 8 963.5 4 269.3 0 0.0 0 0.0
VOlO 14 1352.8 15 1442.4 15 1752.5 12 2346.3

TOTAL: 40803.4 40827.4 41343.9 41047.0

1986
Ist Qtr 2nd Qtr 3rd Qtr 4th Qtr

MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS.

AOIO 26 2535.3 26 2508.5 26 2654.5 26 2391.0
A037 0 0.0 0 0.0 0 0.0 0 0.0
B052 12 1325.1 13 1539.4 13 1452.0 12 1343.0
C009 2 627.6 3 1087.1 3 796.4 1 776.8
C012 4 1109.6 4 983.9 4 1438.0 1479.6
C021 2 416.5 1 276.7 1 295.8 2 341.1
C130 40 8132.9 41 7444.6 41 7402.5 39 8777.9
C135 33 4462.1 33 3786.0 33 3925.9 33 3807.9
E003 1 630.1 2 738.6 2 64t.8 2 493.4
F004 91 6172.7 92 5826.7 92 5626.9 89 5313.6
FO05 12 791.1 12 710.1 12 811.7 12 679.0
FO5 71 5633.2 70 5586.0 70 5057.6 68 5401.1
F016 74 5759.9 75 5695.6 75 5578.6 70 5539.0
HO01 2 204.1 2 164.9 2 270.4 2 196.3
H003 13 1493.3 13 1661.6 13 1526.9 10 1359.0
T033 14 1058.0 14 1101.6 14 1166.4 10 992.0
1039 0 0.0 0 0.0 0 0.0 0 0.0
VOIO 29 2553.7 29 2830.8 29 2826.0 29 2481.0

TOTAL: 42905.2 41942.1 41476.4 41371.7
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1987

ist Qtr 2nd Qtr 3rd Qtr 4th Qtr
MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS.

A010 26 2703.5 26 2464.2 26 2810.4 25 2633.9
A037 0 0.0 0 0.0 0 0.0 0 0.0
B052 13 1608.2 13 1747.0 14 1744.7 13 1587.3
C009 3 857.9 3 820.0 3 698.0 3 733.5
C012 6 1455.4 6 1166.5 6 1463.5 6 1223.6
C021 2 464.6 2 484.1 1 426.9 2 418.8
C130 44 8639.8 42 7117.8 35 6771.9 41 7045.5
C135 26 4010.3 32 3876.9 32 3851.8 30 3793.3
E003 2 631.6 3 684.0 2 686.6 1 732.7
F004 91 5723.4 90 6053.5 91 6428.5 90 5704.6
F005 12 787.8 12 830.7 11 854.5 10 793.3
F015 66 5692.9 70 5523.1 69 5507.3 69 5427.7
F016 68 6186.7 75 5929.1 71 7343.1 87 8278.1
HO01 2 190.4 2 233.0 2 259.9 2 256.7
H003 14 1590.2 14 1546.8 13 1617.4 15 1463.4
T033 14 1022.0 14 1136.6 14 1098.4 14 735.2
T039 0 0.0 0 0.0 0 0.0 0 0.0
VOlO 27 2705.2 26 2708.9 28 2818.0 29 2946.1

TOTAL: 44269.9 42322.2 44380.9 43773.7

1988

Ist Qtr 2nd Qtr 3rd Qtr 4th Qtr

MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS.

AOO 24 2530.3 23 2719.4 26 2700.5 26 2119.8
A037 0 0.0 0 0.0 0 0.0 0 0.0
B052 14 1384.5 14 1695.7 14 1782.4 14 1683.7
C009 2 755.5 2 824.2 2 729.5 2 1049.8
C012 4 1545.6 2 1399.7 2 1732.9 8 1852.9
C021 2 654.1 2 506.5 3 376.0 3 540.0
C130 34 6675.2 38 6197.0 38 6185.6 33 6669.7
C135 30 3601.6 30 3878.1 30 38P7.6 30 3883.5
E003 2 726.0 1 641.8 1 629.1 2 679.0
F004 91 5815.4 86 6705.6 93 6158.5 93 4944.5
F005 11 685.4 10 484.5 6 452.1 6 253.6
F015 71 5189.0 68 5704.8 68 5140.6 67 4773.6
F016 107 7464.9 102 8905.5 110 7594.4 110 6567.9
HO01 3 230.9 3 260.8 1 251.1 2 257.2
H003 13 1571.3 15 1590.9 14 1389.2 i1 1359.5
T033 1i 0.0 7 0.0 4 0.0 0 0.0
T039 0 0.0 0 191.2 0 249.3 0 106.6
VOlO 29 2478.0 28 2287.9 29 2464.5 29 2153.6

TOTAL: 41307.7 43993.6 41723.3 38894.9
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1989

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr
MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS.

A010 25 2146.5 24 2800.6 23 2656.6 21 2227.9
A037 0 0.0 0 0.0 0 0.0 0 0.0
B052 14 1577.5 14 1633.3 14 1652.5 12 1700.7
C009 3 753.8 3 897.1 2 910.5 3 916.0
C012 7 2214.0 9 2243.5 10 2381.7 8 2140.6
C021 1 592.7 3 676.1 3 711.5 3 489.0
C130 32 6240.3 39 5863.9 42 6408.0 41 4914.7
C135 30 3390.1 27 3253.4 27 3314.0 28 3245.9
E003 2 395.8 2 1288.0 3 665.7 1 594.2
F004 94 5837.9 99 5366.0 79 4924.4 70 4112.1
F005 6 50.0 3 0.0 0 0.0 0 0.0
F015 69 5376.7 73 6228.2 72 5565.6 73 5447.5
F016 107 9165.9 106 9904.0 117 11430.1 128 9173.9
HO01 3 263.1 3 454.0 5 531.2 5 466.5
H003 9 1274.4 12 960.9 14 1201.0 12 1155.8
T033 0 0.0 0 0.0 0 0.0 0 0.0
T039 0 1.6 9 0.0 0 0.0 0 0.0
VOlO 27 1394.5 20 390.5 9 0.0 1 0.0

TOTAL: 40674.8 41959.5 42352.8 36584.8

1990

1st Qtr
MD INV. FLY.HRS.

AOO 22 1759
A037 0 0
B052 14 1382
C009 3 930
C012 7 1958
C021 2 408
C130 25 4370
C135 27 2990
E003 1 531
F004 65 4649
FO05 0 0
FO15 72 5677
F016 144 10525
HO01 6 462
H003 12 1032
T033 0 0
T039 0 0
Volo 0 0

TOTAL: 36672
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Appendix H: PACAF MSC Multiple Regression Model SAS Output

First Order Regression Model

Dependent Variable: TON

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 364567520.74 121522506.91 6.153 0.0122
Error 10 197486140.19 19748614.019
C Total 13 562053660.93

Root MSE 4443.94127 R-square 0.6486
Dep Mean 44264.92857 Adj R-sq 0.5432
C.V. 10.03942

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > :T:

INTERCEP 1 385572 125758.88080 3.066 0.0119
A1O 1 13.819258 9.02533356 1.531 0.1567
OFF 1 -61.515186 20.19108244 -3.047 0.0123
F16 1 -1.944066 0.86970203 -2.235 0.0494

Variance
Variable DF Inflation

INTERCEP 1 0.00000000
A1O 1 1.09288403
OFF 1 1.04062524
F16 1 1.06684200

Durbin-Watson D 1.386
(For Number of Obs.) 14
1st Order Autocorrelation 0.178
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Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95%
Obs TON Value Predict Mean Mean Predict Predict

1 47567.0 54696.7 2851.315 48343.6 61049.9 42932.0 66461.4
2 49835.0 48605.7 2095.787 43936.0 53275.4 37658.0 59553.4
3 59435.0 53042.2 3202.388 45906.8 60177.6 40837.3 65247.1
4 48235.0 44772.3 2223.852 39817.2 49727.4 33699.9 55844.7
5 49040.0 46036.1 1491.367 42713.1 49359.1 35591.6 56480.6
6 40829.0 40387.9 1729.508 36534.3 44241.5 29762.7 51013.1
7 42134.0 42633.0 1892.572 38416.0 46849.9 31870.6 53395.3
8 34675.0 39062.5 2273.832 33996.0 44128.9 27939.8 50185.1
9 42681.0 42128.1 1998.290 37675.6 46580.6 31271.3 52984.9
10 39408.0 40481.9 1724.861 36638.6 44325.1 29860.4 51103.3
11 35796.0 42514.4 2509.084 36923.8 48105.0 31143.4 53885.4
12 39293.0 38264.5 2292.814 33155.8 43373.3 27122.5 49406.5
13 42387.0 38407.8 1941.387 34082.1 42733.6 27602.4 49213.3
14 48394.0 48675.9 3874.792 40042.2 57309.5 35538.7 61813.0
15 50977.7 3250.200 43735.8 58219.7 38710.3 63245.2
16 44943.4 5716.943 32205.1 57681.6 28809.3 61077.4
17 40265.8 6571.074 25624.4 54907.2 22590.5 57941.1
18 52728.6 5615.448 40216.5 65240.6 36772.5 68684.7
19 47772.0 6636.996 32983.7 62560.2 29974.8 65569.1
20 46229.3 7086.267 30440.0 62018.6 27592.1 64866.5

Std Err Student Cook's
Obs Residual Residual Residual -2-1-0 1 2 D

1 -7129.7 3408.609 -2.092 0.765
2 1229.3 3918.710 0.314 0.007
3 6392.8 3081.124 2.075 1.163
4 3462.7 3847.479 0.900 0.068
5 3003.9 4186.220 0.718 0.016
6 441.1 4093.583 0.108 0.001
7 -499.0 4020.794 -0.124 0.001
8 -4387.5 3818.154 -1.149 0.117
9 552.9 3969.314 0.139 0.001
10 -1073.9 4095.542 -0.262 0.003
11 -6718.4 3667.848 -1.832 0.393
12 1028.5 3806.786 0.270 0.007
13 3979.2 3997.453 0.995 0.058
14 -281.9 2175.913 -0.130 0.013
15
16
17
18
19
20

Sum of Residuals 0
Sum of Squared Residuals 197486140.19
Predicted Resid SS (Press) 521860388.90
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Figure 65. PACAF Multiple Regression MSC Model Residuals
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Univariate Procedure

Variable=RESIDUAL Residual

Moments

N 14 Sum Wgts 14
Mean 0 Sum 0
Std Dev 3897.594 Variance 15191242
Skewness -0.53872 Kurtosis -0.05306
USS 1.9749E8 CSS 1.9749E8
CV . Std Mean 1041.676
T:Mean=O 0 Prob>T! 1.0000
Num ^= 0 14 Num > 0 8
M(Sign) 1 Prob>:M: 0.7905
Sgn Rank 4.5 Prob>:S: 0.8077
W:Normal 0.940673 Prob<W 0.4089

Quantiles(Def=5)

100% Max 6392.836 99% 6392.836
75% Q3 3003.873 95% 6392.836
50% Med 496.9806 90% 3979.15
25% Q1 -1073.86 10% -6718.42
0% Min -7129.72 5% -7129.72

1% -7129.72
Range 13522.55
Q3-QI 4077.738
Mode -7129.72

Extremes

Lowest Obs Highest Obs
-7129.72( 1) 1229.309( 2)
-6718.42( 11) 3003.873( 5)
-4387.46( 8) 3462.703( 4)
-1073.86( 10) 3979.15( 13)
-498.977( 7) 6392.836( 3)

Missing Value
Count 6
% Count/Nobs 30.00
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Second Order Model

Dependent Variable: TON

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 395623696.61 131874565.54 7.924 0.0053
Error 10 166429964.32 16642996.432
C Total 13 562053660.93

Root MSE 4079.58287 R-square 0.7039
Dep Mean 44264.92857 Adj R-sq 0.6151
C.V. 9.21629

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > ;T:

INTERCEP 1 -32409859 11757503.096 -2.757 0.0203
AlO 1 12.182102 8.12234698 1.500 0.1646
OFF 1 11035 3976.2335756 2.775 0.0196
SOFF 1 -0.938747 0.33623126 -2.792 0.0191

Variance
Variable DF Inflation

INTERCEP 1 0.00000000
AlO 1 1.05030573
OFF 1 47887.705728
SOFF 1 47876.954297

Collinearity Diagnostics(intercept adjusted)

Condition Var Prop Var Prop Var Prop
Number Eigenvalue Number A1O OFF SOFF

1 2.05281 1.00000 0.0222 0.0000 0.0000
2 0.94718 1.47217 0.9572 0.0000 0.0000
3 0.0000104 443.37959 0.0207 1.0000 1.0000

Durbin-Watson D 1.517
(For Number of Obs.) 14
1st Order Autocorrelation 0.227

210



Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95%
Obs TON Value Predict Mean Mean Predict Predict

1 47567.0 49731.3 2252.771 44711.8 54750.8 39347.6 60115.1
2 49835.0 49355.4 1997.138 44905.5 53805.3 39234.7 59476.1
3 59435.0 53631.3 2931.689 47099.1 60163.6 42437.7 64825.0
4 48235.0 48137.2 2377.309 42840.2 53434.2 37616.5 58657.9
5 49040.0 49720.9 1935.701 45407.8 54033.9 39659.6 59782.2
6 40829.0 37267.9 1818.660 33215.6 41320.1 27315.6 47220.2
7 42134.0 39046.5 1787.437 35063.8 43029.2 29122.3 48970.6
8 34675.0 35830.4 2335.316 30627.0 41033.8 25356.5 46304.3
9 42681.0 39643.4 1946.152 35307.1 43979.7 29572.1 49714.7
10 39408.0 40570.7 1581.768 37046.3 44095.1 30821.4 50320.0
1i 35796.0 44785.7 2273.404 39720.2 49851.2 34379.7 55191.8
12 39293.0 42641.7 1355.788 39620.8 45662.6 33062.9 52220.4
13 42387.0 41374.7 1338.444 38392.5 44357.0 31808.1 50941.4
14 '8394.0 47971.8 3531.500 40103.0 55840.5 35949.1 59994.4
15 47752.5 3523.598 39901.4 55603.6 35741.4 59763.6
16 40674.7 5794.483 27763.7 53585.7 24884.8 56464.6
17 41003.6 5621.909 28477.1 53530.1 25526.5 56480.7
18 32500.3 10754.34 8538.0 56462.6 6871.8 58128.8
19 30746.1 10863.71 6540.1 54952.1 4R89.6 56602.6
20 25520.0 11886.17 -964.2 52004.2 -2480.7 53520.7

Std Err- Student Cook's
Obs Residual Residual Residual -2-1-0 1 2 D

1 -2164.3 3401.179 -0.636 0.044
2 479.6 3557.308 0.135 0.001
3 5803.7 2836.934 2.046 1.117
4 97.7893 3315.328 0.029 0.000
5 -680.9 3591.108 -0.190 0.003
6 3561.1 3651.776 0.975 A 0.059
7 3087.5 3667.161 0.842 0.042
8 -1155.4 3345.040 -0.345 0.015
9 3037.6 3585.455 0.847 0.053
10 -1162.7 3760.453 -0.309 0.004
11 -8989.7 3387.422 -2.654 0.793
12 -3348.7 3847.705 -0.870 0.024
13 1012.3 3853.773 0.263 0.002
14 422.2 2042.426 0.207 0.032
15
16
17
18
19
20

Slim of Residuals -1.5E-8
Sum of Squared Residuals 166429964.42
Predicted Resid SS (Press) 397874609.63
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Univariate Procedure

Varidble=RESIDUAL Residual

Moments

N 14 Sum Wgts 14
Mean -1.1E-9 Sum -1.54E-8
Std Dev 3578.031 Variance 12802305
Skewness -0.93707 Kurtosis 2.248215
USS 1.6643E8 CSS 1.6643E8
CV -3.26E14 Std Mean 956.269
T:Mean=O -115E-14 Prob>:IU 1.0000
Num ^= 0 14 Num > 0 8
M(Sign) 1 Prob>:M 0.7905
Sgn Rank 2.5 Prob> S: 0.9032
W:Normal 0.932305 Prob<W 0.3178

Quantiles(Det=5)

100% Max 5803.661 99% 5803.661
75% Q3 3037.597 95% 5803.661
50% Med 260.0139 90% 3561.107
25% Q1 -1162.72 10% -3348.68
0% Min -8989.73 5% -8989.73

1% -8989.73
Range 14793.39
Q3-Q1 4200.321
Mode -8989.73

Extremes

Lowest Obs Highest Obs
-8989.73( 11) 1012.257( 13)
-3348.68( 12) 3037.597( 9)
-2164.32( 1) 3087.52( 7)
-1162.72( 10) 3561.107( 6)
-1155.41( 8) 5803.661( 3)

Missing Value
Count 6
% Count/Nobs 30.00
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Appendix I: PACAF MSC Independent Variable Correlation Matrix

Correlation Analysis

10 'VAR' Variables: AlO B52 C130 C135
F4 FI5 F16 OFF AMN FH

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

A1O 20 2549 210.3304 50973 2120 2856
B52 20 1581 141.1555 31617 1325 1782
C130 20 7139 1037 142789 4915 8778
C135 20 3861 374.5776 77211 3246 4608
F4 20 5698 607.5924 113965 4112 6706
F15 20 5451 303.7384 109015 4774 b228
F16 20 6935 2028 138695 4028 11430
OFF 20 5888 98.8291 117753 5727 5995
AMN 20 15498 110.7208 309951 15338 15664
FH 20 41691 1822 833822 36584 44381
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Correlation Analysis

Pearson Correlation Coefficients / Prob > :R: under Hu: kho=O
/ Number of Observations

A1O B52 C130 C135

AIO 1.00000 0.13118 0.13198 0.19355
0.0 0.5815 0.5791 0.4136
20 20 20 20

B52 0.13118 1.00000 -0.60094 -0.31367
0.5815 0.0 0.0051 0.1781
20 20 20 20

C130 0.13198 -0.60094 1.00000 0.73894
0.5791 0.0051 0.0 0.0002
20 20 20 20

C135 0.19355 -0.31367 0.73894 1.00000
0.4136 0.1781 0.0002 0.0
20 20 20 20

F4 0.50949 0.08656 0.23080 0.49756
0.0218 0.7167 0.3276 0.0256
20 20 20 20

F15 0.52486 0.04250 -0.03142 -0.11977
0.0175 0.8588 0.8954 0.6150
20 20 20 20

F16 -0.00728 0.35618 -0.76353 -0.84326
0.9757 0.1232 0.0001 0.0001
20 20 20 20

OFF 0.15884 -0.38857 0.65899 0.41469
0.5036 0.0904 0.0016 0.0691
20 20 20 20

AMN -0.23557 0.58774 -0.81130 -0.60291
0.3174 0.0064 0.0001 0.0049
20 20 20 20

FH 0.68616 0.00800 0.32168 0.21473
0.0008 0.9733 0.1666 0.3633
20 20 20 20
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Correlation Analysis
Pearson Correlation Coefficients / Prob > :R: under Ho: Rho=O
/ Number of Observations

F4 F15 F16 OFF AMN FH

A1O 0.50949 0.52486 -0.00728 0.15884 -0.23557 0.68616
0.0218 0.0175 0.9757 0.5036 0.3174 0.0008

20 20 20 20 20 20

B52 0.08656 0.04250 0.35618 -0.38857 0.58774 0.00800
0.7167 0.8588 0.1232 0.0904 0.0064 0.9733

20 20 20 20 20 20

C130 0.23080 -0.03142 -0.76353 0.65899 -0.81130 0.32168
0.3276 0.8954 0.0001 0.0016 0.0001 0.1666

20 20 20 20 20 20

C135 0.49756 -0.11977 -0.84326 0.41469 -0.60291 0.21473
0.0256 0.6150 0.0001 0.0691 0.0049 0.3633

20 20 20 20 20 20

F4 1.00000 0.18727 -0.31341 0.37484 -0.11112 0.68490
0.0 0.4292 0.1784 0.1034 0.6409 0.0009

20 20 20 20 20 20

FI5 0.18727 1.00000 0.24315 -0.19402 -0.13059 0.39529
0.4292 0.0 0.3016 0.4124 0.5832 0.0845

20 20 20 20 20 20

F16 -0.31341 0.24315 1.00000 -0.61016 0.74391 0.03572
0.1784 0.3016 0.0 0.0043 0.0002 0.8812

20 20 20 20 20 20

OFF 0.37484 -0.19402 -0.61016 1.00000 -0.66383 0.44059
0.1034 0.4124 0.0043 0.0 0.0014 0.0519

20 20 20 20 20 20

AMN -0.11112 -0.13059 0.74391 -0.66383 1.00000 -0.16132
0.6409 0.5832 0.0002 0.0014 0.0 0.4968

20 20 20 20 20 20

FH 0.68490 0.39529 0.03572 0.44059 -0.16132 1.00000
0.0009 0.0845 0.8812 0.0519 0.4968 0.0

20 20 20 20 20 20
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Appendix J: USAFE Aircraft Flying Hours and Inventory by MD

FISCAL YEAR: 1985

ist Qtr 2nd Qtr 3rd Qtr 4th Qtr
MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS.

AOO 113 11591.3 113 11292.3 111 14426.2 111 13062.0
C009 1597.2 1535.6 1645.3 1402.2
C012 773.7 782.0 885.7 815.3
C021 925.7 821.1 942.5 925.9
C023 389.5 1320.5 2631.2 3881.9
C130 37 8686.5 37 7495.3 37 8567.7 37 8566.4
C135 36 5029.5 36 4522.5 36 4697.4 36 5099.8
C140 417.0 487.0 559.4 438.8
F004 148 9413.3 151 11082.8 153 13074.9 153 12479.4
F005 16 1163.2 15 1209.9 17 1295.9 15 1217.0
F015 99 6767.8 101 6864.5 102 8562.9 101 7971.8
F016 154 11087.1 152 10944.3 154 12165.6 156 11449.1

Fill 144 9491.5 147 9841.9 144 11378.3 145 10260.9
HO01 594.5 531.0 674.9 578.0
H053 7 848.2 7 579.5 8 1154.6 8 996.7
R001 201.9 808.9 672.8 801.5
T039 49.6 0.0 0.0 0.0

TOTAL: 69027.5 70119.1 83335.3 79946.7

1986

ist Qtr 2nd Qtr 3rd Qtr 4th Qtr

MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.RS.

AO1O 111 12746.8 112 10217.6 110 13284.3 113 12175.3
C009 5 1562.2 5 2493.6 5 885.9 4 1506.4
C012 6 795.4 6 1132.3 6 1040.8 6 1153.0
C021 4 966.0 6 1162.8 5 1089.9 6 734.1
C023 0 4054.3 17 2774.0 17 4402.5 17 4852.4
C130 37 8820.2 37 10724.4 36 7125.5 38 8482.9
C135 36 4829.3 43 4156.0 37 4666.9 31 4604.8
C140 4 425.2 4 399.9 4 331.9 4 332.6

F004 141 9237.9 129 9120.3 118 9877.8 103 8650.0
F005 15 1207.4 16 1177.8 16 1287.7 15 1335.1
F015 96 7284.6 92 6570.3 90 8023.4 91 7387.7
F016 145 11755.0 154 11883.1 149 14014.4 174 12841.7
Fill 150 10123.9 151 10409.8 99 12009.3 141 11019.9
HO01 7 463.6 7 606.7 3 671.5 6 640.1
H053 9 536.8 i1 729.3 9 1189.3 11 914.8
RO01 5 743.3 6 854.5 8 771.7 9 996.8

TOTAL 75551.9 74412.4 80672.8 77627.6
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1987

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr
MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS.

AO1O 116 11215.7 91 10566.3 113 13777.1 39 12720.9
C009 3 1491.7 4 1391.8 4 1588.1 5 1552.5
C012 6 1002.1 2 1139.8 6 1224.1 6 1256.6
C020 0 0.0 0 0.0 0 235.1 1 545.6
C021 6 1083.8 2 1132.0 6 1235.2 4 1213.2
C023 17 4158.5 18 3187.0 18 4105.4 17 4550.3
C130 33 8201.6 41 7079.1 42 9082.8 41 8982.4
C135 34 4529.0 30 4124.3 36 4612.4 31 4900.9
C140 4 291.8 1 385.6 3 252.0 2 159.9
F004 43 7060.8 100 6452.4 96 6750.5 74 5516.4
FO05 10 1139.6 11 1163.1 16 1271.4 15 1243.8
FO15 2 6999.0 80 6780.1 92 7811.0 42 7430.1
F016 158 15209.6 193 15380.0 209 19900.8 172 16697.8
Fill 112 10939.6 127 9966.8 143 12716.8 121 11866.6
HOOf 7 578.3 4 560.3 6 643.2 7 655.7
H053 6 671.1 8 566.6 7 904.4 7 1025.6
L109 2 0.0 13 510.9 36 160.2 31 0.0
RO01 3010 735.6 6 982.3 10 1248.8 9 1175.2

TOTAL: 75307.8 71368.4 87519.3 81493.5

1988

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr
MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.RRS.

AOO 131 11924.4 111 10946.8 111 9874.8 110 11695.2
C009 1 1512.2 1 1473.3 5 1876.1 5 1429.8
C012 6 1023.9 6 1401.5 6 981.0 6 784.7
C020 2 393.4 3 589.6 3 516.8 3 581.5
C021 6 1098.2 6 1055.5 6 1090.2 6 1005.5
C023 0 3998.4 11 4266.9 11 2142.1 16 3023.6
C130 29 9592.8 34 8583.7 47 9088.5 46 8035.1
C135 25 3984.4 34 3764.5 37 4674.7 36 4771.3
F004 62 3732.5 46 3693.9 54 3913.5 54 4522.4
FO05 15 1104.3 13 989.1 11 709.6 3 5.4
F015 112 661!.7 96 6950.4 94 7308.5 94 7329.5
F016 235 17330.2 233 19349.4 230 18275.9 216 18468.5
Fill 144 11045.1 145 10956.7 142 11164.4 137 10955.9
HO0W 7 508.4 6 571.9 5 673.5 4 466.8
H053 10 582.0 10 696.0 4 489.4 4 298.4
ROO 6 917.7 0 987.0 9 1332.8 10 1167.9
T039 0 73.8 0 157.7 0 218.7 1 210.0

TOTAL: 75433.4 76433.9 74330.5 74751.5
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1989

1st Qtr 2nd Qtr 3rd Qtr I4th O)tr
MD INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS. INV. FLY.HRS.
-----------------------------------------------------------

AOIO il 10358.5 136 11447.5 85 13193.0 107 13590.9

C009 5 1461.2 4 1333.4 5 1286.8 5 1430.9
C012 6 1076.0 6 1037.1 6 1063.6 6 1040.0

C020 3 531.2 2 577.8 2 543.8 2 653.0
C021 6 1334.2 6 1314.0 5 1376.2 6 1260.5
C023 11 3265.1 17 3362.4 17 3495.6 0 3394.9
C130 47 8879.5 46 8015.0 46 8825.9 40 8897.5
C135 33 4536.5 30 3953.3 31 4430.5 35 4536.9
F004 52 2677.5 51 3541.5 53 4970.2 52 4309.1
F015 94 5390.1 95 7019.9 79 9055.7 95 7212.7
F016 238 16595.3 234 18843.6 210 23118.7 242 22608.5

Fill 140 10073.5 143 11594.1 116 11863.9 138 11441.5

HO01 5 341.6 4 408.2 4 461.0 4 442.0

H053 4 374.1 4 345.7 4 559.1 4 497.7
RO01 10 1100.2 11 1001.4 11 1070.5 12 1414.6
T039 1 113.8 1 103.5 1 123.5 1 61.6
T043 0 28.7 1 253.4 1 192.3 1 218.6
-----------------------------------------------------------

TOTAL: 68137.0 74151.8 85630.3 83010.9

1990
ist Qtr

MD INV. FLY.HRS.

AOO 107 10639
C009 5 1516
C012 5 798
C020 2 526
C021 6 926
C023 16 2864
C130 43 7855
C135 29 3595
F004 54 3487
FO5 94 6194
F016 242 18831
Fill 138 10188
HO01 4 309
H053 4 439
RO01 4 0
T039 1 89
T043 1 159

TOTAL: 68417.6
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Appendix K: USAFE MSC Multiple Regression Model SAS Output

Fi.rt Order Model

Dependent Variable: TON

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 915845924.65 305281974.88 7.136 0.0076
Error 10 427834146.85 42783414.685
C Total 13 1343680071.5

Root MSE 6540.90320 R-square 0.6816
Dep Mean 73417.50000 Adj R-sq 0.5861
C.V. 8.90919

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > :T:

INTERCEP 1 630601 175849.60077 3.586 0.0050
C130 1 4.464226 1.93861574 2.303 0.0440
F4 1 2.478257 0.68166009 3.636 0.0046
OFF 1 -59.980187 17.29779539 -3.468 0.0060

Variance
Variable DF Inflation

INTERCEP 1 0.00000000
C130 1 1.03680183
F4 1 1.20108991
OFF 1 1.16148972

Durbin-Watson D 2.123
(For Number of Obs.) 14
Ist Order Autocorrelation -0.155
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Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95%
Obs TON Value Predict Mean Mean Predict Predict

1 96200.0 91403.3 4919.119 80442.8 102364 73167.7 109639
2 71083.0 73008.3 3026.709 66264.3 79752.3 56949.5 89067.2
3 83702.0 82730.7 3525.498 74875.3 90586.0 66174.3 99287.0
4 77001.0 81251.6 3188.892 74146.3 88357.0 65037.7 97465.5
5 78732.0 74351.0 1992.410 69911.6 78790.4 59115.8 89586.3
6 80227.0 80041.8 4763.798 69427.3 90656.3 62012.0 98071.6
7 73784.0 65851.1 3495.006 58063.7 73638.5 49326.9 82375.3
8 56587.0 68868.2 2234.929 63888.5 73848.0 53466.8 84269.6
9 57977.0 63673.3 2756.989 57530.3 69816.3 47857.5 79489.2
10 64120.0 62076.1 3792.434 53626.0 70526.2 45229.4 78922.7
11 72994.0 71756.4 2187.709 66881.9 76631.0 56388.7 87124.2
12 74368.0 68251.8 2601.266 62455.8 74047.9 52567.5 83936.2
13 70603.0 66553.8 3799.897 58087.1 75020.6 49698.8 83408.8
14 70467.0 78027.5 4829.900 67265.7 88789.2 59910.6 96144.3
15 80827.1 4817.011 70094.1 91560.1 62727.3 98926.9
16 77635.5 4872.527 66778.8 88492.3 59462.1 95809.0
17 76831.0 5052.622 65572.9 88089.0 58415.0 95246.9
18 68757.2 4095.383 59632.0 77882.3 51562.0 85952.3
19 75914.6 3336.487 68480.4 83348.8 59553.9 92275.3
20 74597.9 3523.494 66747.0 82448.8 58043.7 91152.1

Std Err Student Cook's
Obs Residual Residual Residual -2-1-0 1 2 D

1 4796.7 4311.112 1.113 i 0.403
2 -1925.3 5798.487 -0.332 0.008
3 971.3 5509.472 0.176 0.003
4 -4250.6 5710.900 -0.744 0.043
5 4381.0 6230.065 0.703 0.013
6 185.2 4482.147 0.041 0.000
7 7932.9 5528.865 1.435 0.206
8 -12281.2 6147.236 -1.998 0.132
9 -5696.3 5931.477 -0.960 * 0.050
t0 2043.9 5329.246 0.384 0.019
11 1237.6 6164.199 0.201 0.001
12 6116.2 6001.402 1.019 0.049
13 4049.2 5323.927 0.761 1* 0.074
14 -7560.5 4410.836 -1.714 **: 0.881
15
16
17
18
19
20

Sum of Residuals 0
Sum of Squared Residuals 427834146.85
Predicted Resid SS (Press) 926934269.27
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Univariate Procedure

Variable=RESIDUAL Residual

Moments

N 14 Sum Wgts 14
Mean 0 Sum 0
Std Dev 5736.752 Variance 32910319
Skewness -0.73824 Kurtosis -0.00419
USS 4.2783E8 CSS 4.2783E8
CV . Std Mean 1533.211
T:Mean=O 0 Prob>:T: 1.0000
Num ^= 0 14 Num > 0 9
M(Sign) 2 Prob>:M: 0.4240
Sgn Rank 5.5 Prob>:S: 0.7609
W:Normal 0.951712 Prob<W 0.5565

Quantiles(Def=5)

100% Max 7932.917 99% 7932.917
75% Q3 4380.97 95% 7932.917
50% Med 1104.454 90% 6116.151
25% Qi -4250.63 10% -7560.45
0% Min -12281.2 5% -12281.2

1% -12281.2
Range 20214.13
Q3-Q1 8631.595
Mode -12281.2

Extremes

Lowest Obs Highest Obs
-12281.2( 8) 4049.183( 13)
-7560.45( 14) 4380.97( 5)
-5696.34( 9) 4796.689( 1)
-4250.63( 4) 6116.151( 12)
-1925.31( 2) 7932.917( 7)

Missing Value
Count 6
% Count/Nobs 30.00
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Second Order Model

Dependent Variable: TON

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 4 1011343900.9 252835975.22 6.847 0.0082
Error 9 332336170.6 36926241.178
C Total 13 1343680071.5

Root MSE 6076.69657 R-square 0.7527
Dep Mean 73417.50000 Adj R-sq 0.6427
C.V. 8.27690

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > :r:

INTERCEP 1 -30448299 19326429.051 -1.575 0.1496
C130 1 4.580591 1.80248554 2.541 0.0316
F4 1 2.706706 0.64902005 4.170 0.0024
OFF 1 6050.498256 3799.7022610 1.592 0.1458
SOFF 1 -0.300314 0.18674404 -1.608 0.1423

Variance
Variable DF Inflation

INTERCEP 1 0.00000000
C130 1 1.03847538
F4 1 1.26152643
OFF 1 64934.176488
SOFF 1 64979.893180

Collinearity Diagnostics(intercept adjusted)

Condition Var Prop Var Prop Var Prop Var Prop
Number Eigenvalue Number C130 F4 OFF SOFF

1 2.23588 1.00000 0.0037 0.0571 0.0000 0.0000
2 1.06728 1.44739 0.7059 0.1112 0.0000 0.0000
3 0.69684 1.79126 0.2888 0.7842 0.0000 0.0000
4 7.69743E-6 538.95360 0.0016 0.0476 1.0000 t.0000

Durbin-Watson D 2.292
(For Number of Obs.) 14
ist Order Autocorrelation -0.208
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Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95%
Obs TON Value Predict Mean Mean Predict Predict

1 96200.0 91417.8 4570.019 81079.6 101756 74217.6 108618
2 71083.0 74121.5 2895.851 67570.6 80672.4 58893.8 89349.2
3 83702.0 84423.7 3440.326 76641.0 92206.3 68626.9 100220
4 77001.0 82808.6 3116.760 75757.9 89859.2 67359.3 98257.8
5 78732.0 75196.9 1924.293 70843.8 79550.0 60777.6 89616.2
6 80227.0 77058.0 4798.894 66202.1 87914.0 59541.8 94574.3
7 73784.0 62621.5 3817.845 53984.8 71258.1 46386.9 78856.0
8 56587.0 65516.2 2942.064 58860.7 72171.7 50243.2 80789.2
9 57977.0 59925.4 3462.949 52091.6 67759.2 44103.4 75747.4

10 64120.0 64930.9 3945.248 56006.1 73855.8 48541.3 81320.6
11 72994.0 74912.5 2825.286 68521.2 81303.7 59752.8 90072.2
12 74368.0 71114.3 3001.415 64324.6 77904.0 55782.4 86446.3
13 70603.0 69079.7 3863.867 60339.0 77820.5 52789.6 85369.9
14 70467.0 74718.1 4936.495 63550.9 85885.3 57007.2 92429.0
15 77626.8 4897.678 66547.4 88706.2 59971.2 95282.4
16 74451.8 4940.705 63275.1 85628.6 56734.9 92168.7
17 73324.0 5175.874 61615.2 85032.7 55266.8 91381.2
18 72762.0 4547.277 62475.3 83048.8 55592.7 89931.3
19 80340.2 4145.030 70963.4 89717.0 63700.1 96980.3
20 78880.9 4219.981 69334.5 88427.2 62144.6 95617.1

Std Err Student Cook's
Obs Residual Residual Residual -2-1-0 1 2 D

1 4782.2 4005.143 1.194 1 0.371
2 -3038.5 5342.311 -0.569 * 0.019
3 -721.7 5009.032 -0.144 0.002
4 -5807.6 5216.517 -1.113 0.088
5 3535.1 5763.969 0.613 A 0.008
6 3169.0 3727.848 0.850 * 0.240
7 11162.5 4727.611 2.361 ***A 0.727
8 -8929.2 5317.001 -1.679 AA* 0.173
9 -1948.4 4993.418 -0.390 0.015

10 -810.9 4621.824 -0.175 0.004
11 -1918.5 5379.963 -0.357 0.007
12 3253.7 5283.725 0.616 0.024
13 1523.3 4690.072 0.325 0.014
14 -4251.1 3543.622 -1.200 *"0.559
15
16
17
18
19
20

Sum of Residuals 1.0:36E-9
Sum of Squared Residuals 332336170.37
Predicted Resid SS (Press) 959980694.73
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Univariate Procedure

Variable=RESIDUAL Residual

Moments

N 14 Sum Wgts 14
Mean 9.98E-11 Sum 1.397E-9
Std Dev 5056.117 Variance 25564321
Skewness 0.406986 Kurtosis 0.720298
USS 3.3234E8 CSS 3.3234E8
CV 5.067E15 Std Mean 1351.304
T:Mean=O 7.38E-14 Prob>:T 1.0000
Num -= 0 14 Num > 0 6
M(Sign) -1 Prob>:M: 0.7905
Sgn Rank -0.5 Prob>:S: 1.0000
W:Normal 0.973954 Ptub<W 0.8865

Quantiles(Def=5)

100% Max 11162.54 99% 11162.54
75% Q3 3253.681 95% 11162.54
50% Med -766.29 90% 4782.243
25% Q1 -3038.5 10% -5807.58
0% Min -8929.2 5% -8929.2

1% -8929.2
Range 20091.73
Q3-Q1 6292.18
Mode -8929.2

Extremes

Lowest Obs Highest Obs
-8929.2( 8) 3168.967( 6)

-5807.58( 4) 3253.681( 12)
-4251.11( 14) 3535.09( 5)
-3038.5( 2) 4782.243( 1)

-1948.39( 9) 11162.54( 7)

Missing Value
Count 6
% Count/Nobs 30.00
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Appendix L: USAFE MSC Independent Variable Correlation Matrix

Correlation Analysis

10 'VAR' Variables: A1O C130 C135 F4
FI5 F16 Fill OFF AMN FH

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

AlO 20 12005 1300 240098 9874 14426
C130 20 8586 824.8657 171723 7079 10724
C135 20 4521 360.3656 90415 3764 5099
F4 20 7003 3177 140067 2677 13074
F15 20 7266 781.6823 145322 5390 9055
F16 20 15896 3822 317910 10944 23118
Fill 20 10955 838.5357 219108 9491 12716
OFF 20 10206 140.2270 204123 10004 10354
AMN 20 28239 206.4878 564776 27951 2861.0
FH 20 76913 5428 1538251 68137 87519
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Correlation Analysis

Pearson Correlation Coefficients / Prob > :R: under Ho: Rho=O
/ Number of Observations

A1O C130 C135 F4

AlO 1.00000 -0.07831 0.39907 0.39670
0.0 0.7428 0.0813 0.0833
20 20 20 20

C130 -0.07831 1.00000 -0.06920 -0.15546
0.7428 0.0 0.7719 0.5128
20 20 20 20

C135 0.39907 -0.06920 1.00000 0.49552
0.0813 0.7719 0.0 0.0263
20 20 20 20

F4 0.39670 -0.15546 0.49552 1.00000
0.0833 0.5128 0.0263 0.0
20 20 20 20

F15 0.73328 -0.14296 0.30368 0.38319
0.0002 0.5476 0.1930 0.0954

20 20 20 20

F16 0.09218 0.09166 -0.37228 -0.80098
0.6991 0.7007 0.1060 0.0001
20 20 20 20

Fll 0.53614 0.06372 -0.09432 -0.25568
0.0148 0.7896 0.6925 0.2766
20 20 20 20

OFF 0.33781 -0.04828 0.10552 0.65388
0.1452 0.8398 0.6579 0.0018
20 20 20 20

AMN 0.43033 -0.09078 0.37328 0.72129
0.0582 0.7035 0.1050 0.0003
20 20 20 20

FH 0.81559 0.14869 0.15646 0.11947
0.0001 0.5315 0.5101 0.6159
20 20 20 20
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Correlation Analysis

Pearson Correlation Coefficients / Prob > :R: under Ho: Rho=O
/ Number of Observations

FI5 F16 Fill OFF AMN FH

A1O 0.73328 0.09218 0.53614 0.33781 0.43033 0.81559

0.0002 0.6991 0.0148 0.1452 0.0582 0.0001

20 20 20 20 20 20

C130 -0.14296 0.09166 0.06372 -0.04828 -0.09078 0.14869

0.5476 0.7007 0.7896 0.8398 0.7035 0.5315

20 20 20 20 20 20

C135 0.30368 -0.37228 -0.09432 0.10552 0.37328 0.15646

0.1930 0.1060 0.6925 0.6579 0.1050 0.5101

20 20 20 20 20 20

F4 0.38319 -0.80098 -0.25568 0.65388 0.72129 0.11947

0.0954 0.0001 0.2766 0.0018 0.0003 0.6159

20 20 20 20 20 20

FI5 1.00000 0.15577 0.56575 0.23977 0.32944 0.80272

0.0 0.5120 0.0093 0.3086 0.1561 0.0001

20 20 20 20 20 20

F16 0.15577 1.00000 0.61660 -0.53702 -0.51689 0.41797

0.5120 0.0 0.0038 0.0146 0.0196 0.0667

20 20 20 20 20 20

FIll 0.56575 0.61660 1.00000 0.07598 -0.27078 0.81824

0.0093 0.0038 0.0 0.7502 0.2482 0.0001

20 20 20 20 20 20

OFF 0.23977 -0.53702 0.07598 1.00000 0.38588 0.26475

0.3086 0.0146 0.7502 0.0 0.0929 0.2593

20 20 20 20 20 20

AMN 0.32944 -0.51689 -0.27078 0.38588 1.00000 0.07005

0.1561 0.0196 0.2482 0.0929 0.0 0.7692

20 20 20 20 20 20

FH 0.80272 0.41797 0.81824 0.26475 0.07005 1.00000

0.0001 0.0667 0.0001 0.2593 0.7692 0.0

20 20 20 20 20 20
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Appendix M: PACAF Transformed Network Data

FY/QTR MSC MAC A1O C130 C135 FA F15

85/1 0.5341 0.6045 0.6020 0.7603 0.8509 0.7114 0.5840
85/2 0.6067 0.7101 0.5050 0.6467 0.6445 0.7351 0.3760
85/3 0.9139 0.6435 0.8560 0.7396 0.6483 0.6772 0.5585
85/4 0.5555 0.6824 0.4050 0.8584 0.6253 0.3834 0.3605
86/1 0.5813 0.6144 0.5350 0.7632 0.7731 0.7378 0.5665
86/2 0.3185 0.5451 0.5090 0.6221 0.4125 0.6314 0.5430
86/3 0.3603 0.8685 0.6550 0.6134 0.4872 0.5698 0.2790
86/4 0.1216 0.7360 0.3910 0.8955 0.4243 0.4735 0.4505
87/1 0.3778 0.6403 0.7040 0.8672 0.5320 0.5994 0.5965
87/2 0.2731 0.7243 0.4640 0.5550 0.4611 0.7012 0.5115
87/3 0.1575 0.8888 0.8100 0.4840 0.4477 0.8166 0.5035
87/4 0.2694 0.7251 0.6340 0.5402 0.4163 0.5938 0.4640
88/1 0.3684 0.5904 0.5300 0.4641 0.3144 0.6277 0.3445
88/2 0.5606 0.5349 0.7190 0.3661 0.4616 0.9018 0.6025
88/3 0.7756 0.3208 0.7010 0.3638 0.4669' 0.7335 0.3205
88/4 0.3640 0.1016 0.1200 0.4631 0.4648 0.3600 0.1370
89/1 0.3905 0.0843 0.1470 0.3749 0.2013 0.6348 0.4385
89/2 0.4548 0.1597 0.8010 0.2977 0.1283 0.4895 0.8640
89/3 0.4203 0.1416 0.6570 0.4093 0.1608 0.3535 0.5330
89/4 0.J12 0.0843 0.2280 0.1031 0.1245 0.1037 0.4740
90/1 0.1629 0.2080 -0.2410 -0.0087 -0.0125 0.2686 0.5880

FY/QTR F16 B52 OFF AMN

85/1 0.1028 0.3928 0.4627 0.1760
85/2 0.1225 0.7336 0.6520 0.3340
85/3 0.1438 0.5576 0.6520 0.3340
85/4 0.2486 0.2504 0.6520 0.3340
86/1 0.2760 0.1400 0.6520 0.3340
86/2 0.2696 0.4824 0.8867 0.2700
86/3 0.2579 0.3432 0.8867 0.2700
86/4 0.2539 0.1688 0.8867 0.2700
87/1 0.3187 0.5928 0.8867 0.2700
87/2 0.2929 0.8152 0.8360 0.5060
87/3 0.4343 0.8120 0.8360 0.5060
87/4 0.5278 0.5592 0.8360 0.5060
88/1 0.4465 0.2360 0.8360 0.5060
88/2 0.5906 0.7336 0.3827 0.8280
88/3 0.4594 0.8712 0.3827 0.8280
88/4 0.3568 0.7144 0.3827 0.8280
89/1 0.6166 0.5448 0.3827 0.8280
89/2 0.6904 0.6328 0.1720 0.6580
89/3 0.8430 0.6648 0.1720 0.6580
89/4 0.6174 0.7416 0.1720 0.6580
90/1 0.7525 0.2312 0.1720 0.6580
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PACAF TRANSFORMATION EQUATIONS

Var. Transformation Equation

MSC Transformed MSC = (MSC - 34000)(.4/12500) + .1

MAC Transformed MAC = (MAC - 3900)(.4/1500) + .1

A1O Transformed A1O = (AlO - 2100)(.4/400) + .1

C130 Transformed C130 = (C130 - 4900)(.4/1950) + .1

C135 Transformed C135 = (C135 - 3200)(.4/750) + .1

F4 Transformed F4 = (F4 - 4100)(.4/1300) + .1

F15 Transformed F15 U15 - 4700)(.4/800) + .1

F16 Transformed F16 = (F16 - 4000)(.4/4000) + .1

B52 Transformed B52 = (B52 - 1300)(.4/250) + .1

OFF Transformed OFF = (OFF - 5700)(.4/150) + .1

AMN Transformed AMN = (AMN - 15300)(.4/200) + .1
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Appendix N: USAFE Transformed Network Data

FY/QTR MSC MAC AIO C130 C135 F4 F15

85/1 0.9040 0.6262 0.4049 0.4372 0.8594 0.6191 0.4088
85/2 0.4017 0.6502 0.3540 0.1990 0.5697 0.7462 0.4293
85/3 0.6540 0.7814 0.8874 0.4134 0.6697 0.8980 0.7867
85/4 0.5200 0.6403 0.6552 0.4132 0.8994 0.8527 0.6623
86/1 0.5546 0.7219 0.6014 0.4640 0.7451 0.6057 0.5177
86/2 0.5845 0.6413 0.1710 0.8448 0.3606 0.5968 0.3674
86/3 0.4557 0.8213 0.6930 0.1250 0.6520 0.6544 0.6733
86/4 0.1117 0.8520 0.5043 0.3964 0.6166 0.5610 0.5394
87/1 0.1395 0.5691 0.3409 0.3402 0.5737 0.4398 0.4577
87/2 0.2624 0.5859 0.2304 0.1158 0.3423 0.3935 0.4116
87/3 0.4399 0.9693 0.7769 0.5164 0.6211 0.4162 0.6286
87/4 0.4674 0.9267 0.5970 0.4964 0.7857 0.3222 0.5484
88/1 0.3921 0.7330 0.4615 0.6184 0.2623 0.1862 0.3760
88/2 0.3893 0.4667 0.2951 0.4166 0.1366 0.1833 0.4474
88/3 0.6097 0.2592 0.1126 0.5176 0.6566 0.2000 0.5227
88/4 0.5138 0.2483 0.4226 0.3070 0.7120 0.2464 0.5272
R0/1 0.4569 0.3510 0.1950 0.4758 0.5777 0.1059 0.1189

89/2 0.2571 0.1008 0.3803 0.3030 0.2446 0.1717 0.4619
89/3 0.4761 0.1416 0.6775 0.4650 0.5171 0.2806 0.8905
89/4 0.7523 0.1691 0.7451 0.4794 0.5777 0.2302 0.5025
90/1 0.2731 0.0554 0.2428 0.2710 0.0400 0.1676 0.2882

FY/QTR F16 FIll OFF AMN

85/1 0.1122 0.1099 0.1500 0.8573
85/2 0.1029 0.1948 0.7240 0.7080
85/3 0.1823 0.5674 0.7240 0.7080
85/4 0.1357 0.2964 0.7240 0.7080
86/1 0.1556 0.2632 0.7240 0.7080
86/2 0.1639 0.3325 0.8080 0.4957
86/3 0.3025 0.7204 0.8080 0.4957
86/4 0.2262 0.4804 0.8080 0.4957
87/1 0.3803 0.4610 0.8080 0.4957
87/2 0.3914 0.2251 0.6440 0.3027
87/3 0.6854 0.8918 0.6440 0.3027
87/4 0.4770 0.6857 0.6440 0.3027
88/1 0.5182 0.4867 0.6440 0.3027
88/2 0.6495 0.4651 0.1080 0.1544
88/3 0.5797 0.5155 0.1080 0.1544
88/4 0.5922 0.4648 0.1080 0.1544
89/1 0.4704 0.2510 0.1080 0.1544
89/2 0.6166 0.6198 0.3200 0.5757
89/3 0.8947 0.6850 0.3200 0.5757
89/4 0.8615 0.5827 0.3200 0.5757
90/1 0.6158 0.2789 0.3200 0.5757
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USAFE TRANSFORMATION EQUATIONS

Var. Transformation Equation

MSC Transformed MSC = (MSC - 56000)(.4/20000) + .1

MAC Transformed MAC = (MAC - 6000)(.4/2500) + .1

AlO Transformed AIO = (AlO - 9800)(.4/2350) + .1

C130 Transformed C130 = (C130 - 7000)(.4/2000) + .1

C135 Transformed C135 = (C135 - 3700)(.4/700) + .1

F4 Transformed F4 = (F4 - 2600)(.4/5250) + .1

F15 Transformed F15 = (F15 - 5300)(.4/1900) + .1

F16 Transformed F16 = (F16 - 10900)(.4/6150) + .1

F11i Transformed Fil = (Fll - 9400)(.4/1650) + .1

OFF { Transformed OFF = (OFF - 1000)(.4/200) + .1

AMN Transformed AMN = (AMN - 27900)(.4/375) + .1
Ii
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Appendix 0: PACAF and USAFE MSC Multivariable Network Output

PACAF MSC FULL MULTIVARIABLE NETWORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY et (et-e~tl))2  et2

85/1 47567 55460 62293529 10903676 -7893 62293529
85/2 49835 48718 1248178 31025696 1117 81177284 1248178
85/3 59435 53681 33114270 2.30E+08 5755 21504377 33114270
85/4 48235 46999 1528778 15761467 1236 20412889 1528778
86/1 49040 49496 207993 22801307 -456 2864556 207993
86/2 40829 38417 5818950 11805605 2412 8227217 5818950
86/3 42134 42374 57360 4540857 -240 7031778 57360
86/4 34675 39022 18894779 91966730 -4347 16870016 18894779
87/1 42681 42668 181 2508830 13 19011780 i8
87/2 39408 40015 368715 23589755 -607 385214.2 368715
87/3 35796 42323 42602953 71722751 -6527 35044920 42602953
87/4 39293 39359 4373 24720074 -66 41744117 4373
88/1 42387 38149 17959055 3526616 4238 18523878 17959099
88/2 48394 49503 1230644 17049231 -1109 28592080 1230644

Actual Predicted Total: 3.01E+08 1.85E+08
FY/Qtr Tons Tons AE

88/3 55113 52321 2792
88/4 42250 46438 4188
89/1 43079 38324 4755
89/2 45086 45486 400
80/3 44009 43804 205
89/4 41224 39175 2049

MAE: 2398
MIN: 205
MAX: 4755
SSE: 1.85E+08
SSY: 5.62E+08
RSQUARE: 0.67
DW: 1.63
Y BAR: 44264.93
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PACAF MSC REDUCED MULTIVARIABLE NETWORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY et (et-et 1. 1 )2  e,2

85/1 47567 56579 81223466 10903676 -9012 81223466
85/2 49835 49583 63457 31025696 252 85827486 63457
85/3 59435 55296 17130545 2.30E+08 4139 15108769 17130545
85/4 48235 44857 11407928 15761467 3378 579644.3 11407928
86/1 49040 46498 6461764 22801307 2542 698164.7 6461764
86/2 40829 40504 105321 11805605 325 4917168 105321
86/3 42134 42894 578265 4540857 -760 1177157 578265
86/4 34675 39240 20841793 91966730 -4565 14476836 20841793
87/1 42681 42403 77249 2508830 278 23456768 77249
87/2 39408 40523 1244271 23589755 -1115 1941581 1244271.
87/3 35796 42877 50137906 71722751 -7081 35585326 50137906
87/4 39293 38754 290689 24720074 539 58063924 290689
88/1 42387 38790 12937510 3526616 3597 9349644 12937510

Actual Predicted Total: 2.76E+08 2.04E+08
FY/Qtr Tons Tons AE

88/3 55113 52512 2601
88/4 42250 44522 2272
89/1 43079 39791 3288
89/2 45086 54536 9450
89/3 44009 48379 4370
89/4 41224 45988 4764

MAE: 4457
MIN: 2272
MAX: 9450
SSE: 2.04E+08
SSY: 5.62E+08
RSQUARE: 0.64

DW: 1.35
Y BAR: 44264.93
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USAFE MSC FULL MULTIVARIABLE NETWORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY et (et-et-,1 )2  e,2

85/1 96200 95829 137641 5.19E+08 371 137641
85/2 71083 69285 3234422 5449890 1798 2037614 3234422
85/3 83702 83487 46311 1.06E+08 215 2506681 46311
85/4 77001 80320 11016425 12841472 -3319 12491276 11016425
86/1 78732 78085 418156 28243910 647 15727173 418156
86/2 80227 77007 10370654 46369290 3220 6623932 10370654
86/3 73784 65964 61153964 134322.3 7820 21157700 61153964
86/4 56587 68991 1.54E+08 2.83E+08 -12404 4.09E+08 1.54E+08
87/1 57977 64534 42997528 2.38E+08 -6557 34181562 42997528
87/2 64120 59904 17770862 86443506 4216 1.16E+08 17770862
87/3 72994 74109 1242445 179352.3 -1115 28411032 1242445
87/4 74368 71528 8063896 903450.3 2840 15636884 8063896
88/. 70603 69884 517249 7921410 719 4496520 517249
88/2 70467 74158 13626803 8705450 -3691 19453833 13626803

Actual Predicted Total: 6.88E+08 3.24E+08
FY/Qtr Tons Tons AE

88/3 81486 76908 4578
88/4 76688 75211 1477
89/1 73847 76125 2278
89/2 63853 73171 9318
89/3 74806 81517 6711
89/4 88613 83334 5279

MAE: 4940
MIN: 1474
MAX: 9318
SSE: 3.24E+08
SSY: 1.34E+09
RSQUARE: 0.76
DW: 2.12
Y BAR: 73417.5
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USAFE MSC REDUCED MULTIVARIABLE NETWORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY et (et-et-l)) 2  et2

85/1 96200 90872 2.84E+07 5.19E+08 5328.35 28391314
85/2 71083 70667 1.73E+05 5449890 415.9 24132165 172972.8
85/3 83702 81030 7.14E+06 1.06E+08 2672.3 5091341 7141187
85/4 77001 79436 5.93E+06 12841472 -2434.95 26084003 5928982
86/1 78732 72448 3.95E+07 28243910 6283.55 76012242 39483001
86/2 80227 78999 1.51E+06 46369290 1228.35 25555047 1508844
86/3 73784 64652 8.34E+07 134322.3 9132.2 62470845 83397077
86/4 56587 67375 1.16E+08 2.83E+08 -10787.6 3.97E+08 1.16E+08
87/1 57977 63465 3.01E+07 2.38E+08 -5487.75 28088410 30115400
87/2 64120 62198 3.69E+06 86443506 1921.7 54899949 3692931
87/3 72994 70164 8.01E+06 179352.3 2830.2 825372.3 8010032
87/4 74368 67110 5.27E+07 9"3450.3 7257.75 19603199 52674935
88/1 70603 65964 2.15E+07 7921410 4639.05 6857590 21520785
88/2 70467 76468 3.60E+07 8705450 -6000.9 1.13E+08 36010801

Actual Predicted Total: 8.4E+08 -4.34E+08
FY/Qtr Tons Tons AE

88/3 81486 79684 1803
88/4 76688 75821 867
89/1 73847 75344 1497
89/2 63853 67320 3467
89/3 74806 74269 537
89/4 88613 72977 15636

MAE: 3968
MIN: 537
MAX: 15636
SSE: 4.34E+08
SSY 1.34E+09
RSQUARE: 0.68
DW: 1.93
Y BAR: 73417.5
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Appendix P: Trend and Seasonal Analysis (PACAF and USAFE MAC Data)

TREND AND SEASONAL ANALYSIS: PACAF MAC

Actual DBQ DBQ-1 DBQ-2
Variance: 189169.5 372812.9 417384.8 989592.1
Index: 100% 197% 221% 523%

Trend: None None Moderate Strong
Seasonal: No Yes Yes Yes

+ ++ ++ ++ +

Diffs First Second
Between DiffF Diffs

Actual Same Qtr. Between Between
Year Qtr Data Ea.Year Difts Diffs

1978 1 5421
2 5801
3 6021
4 5754

1979 1 5427 6
2 5456 -345 -351
3 5692 -329 16 367
4 5940 186 515 499

1980 1 6495 1068 882 367
2 6647 1191 123 -759
3 6951 1259 68 -55
4 6406 466 -793 -861

1981 1 5902 -593 -1059 -266
2 6016 -631 -38 1021
3 6166 -785 -154 -116
4 6818 412 1197 1351

1982 1 6363 461 49 -1148
2 5860 -156 -617 -b66
3 5934 -232 -76 541
4 5368 -1450 -1218 -1142

1983 1 5729 -634 816 2034
2 6768 908 1542 726
3 6386 452 -456 -1998
4 6203 835 383 839

1984 1 6020 291 -544 -927
2 6916 148 -143 401
3 6050 -336 -484 -341
4 5829 -374 -38 446

1985 1 5792 -228 146 184
2 6188 -728 -500 -0/f
3 593F -112 616 1116
4 6084 255 367 249
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1986 1 5829 37 -218 -585
2 5569 -619 -656 -438
3 6782 844 1463 2119
4 6285 201 -643 -2106

1987 1 5926 97 -104 539
2 6241 672 575 679
3 6858 76 -596 -1171
4 6244 -41 -117 479

1988 1 5739 -187 -146 -29
2 5531 -710 -523 -377
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TREND AND SEASONAL ANALYSIS: USAFE MAC

Actual. DBQ DBQ-1 DBQ-2
Variance: 555795.1 318387.1 569278.2 1494079
Index: 100% 168% 301% 790%

Trend: None None Moderate Strong
Seasonal: No Yes Yes Yes

Diffs First Second
Between Diffs Diffs

Actual Same Qtr. Between Between
Year Qtr Data Ea.Year Diffs Diffs

1978 1 9828
2 8942
3 9793
4 9430

1979 1 8821 -1007
2 8831 -111 896
3 8841 -952 -841 -1737
4 9322 -108 844 1685

1980 1 8496 -325 -217 -1061
2 8573 -258. 67 284
3 8867 26 284 217
4 9174 -148 -174 -458

1981 1 9244 748 896 1070
2 8372 -201 -949 -1845
3 9170 303 504 1453
4 8747 -427 -730 -1234

1982 1 8610 -634 -207 523
2 8138 -234 400 607
3 9270 100 334 -66
4 9153 406 306 -28

1983 1 8637 27 -379 -685
2 8242 104 77 456
3 9178 -92 -196 -273
4 9327 174 266 462

1984 1 8704 67 -107 -373
2 9249 1007 940 1047
3 10058 880 -127 -1067
4 9672 345 -535 -408

1985 1 9289 585 240 775
2 9439 190 -395 -635
3 10259 201 11 406
4 9377 -295 -496 -507

1986 1 9887 598 893 1389
2 9383 -56 -654 -1547
3 10508 249 305 959
4 10700 1323 1074 769
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1987 1 8932 -955 -2278 -3352
2 9037 -346 609 2887
3 11433 925 1271 662
4 11167 467 -458 -1729

1988 1 9956 1024 557 1015
2 8292 -745 -1769 -2326
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Appendix Q: Time Series Analysis (PACAF and USAFE MAC Data)

ARIMA Procedure

Name of variable = PACAF MAC Tonnage.

Mean of working series = 6079.643
Standard deviation = 429.7271
Number of observations = 42

Autocorrelations

Lag Covariance Correlation i 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0 184665 1.00000
1 67446.713 0.36524
2 -13699.566 -0.07419 *

3 -20158.961 -0.10916 *

4 -32.950923 -0.00018
5 -14004.342 -0.07584 *
6 -19872.086 -0.10761 .

7 -15073.557 -0.08163
8 -20288.315 -0.10987 *
9 -20924.716 -0.11331

10 -32539.597 -0.17621 .

i -24268.040 -0.13142
12 7772.725 0.04209
13 57953.341 0.31383 .

14 31688.784 0.17160
15 -2554.411 -0.01383
16 -1581.958 -0.00857
17 -5107.834 -0.02766
18 -30806.527 -0.16682 .

19 -14576.216 -0.07893
20 -21747.100 -0.11776 .

21 -18905.326 -0.10238 .

22 -1948.932 -0.01055
23 14853.041 0.08043 .

24 13781.543 0.07463 .

marks two standard errors
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Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 -0.43377
2 0.16623
3 0.12504 1
4 -0.10991 .

5 -0.00509 1
6 0.15576 *
7 -0.12543 **

8 0.13354
9 0.00064 .

10 0.14782
11 -0.09365 .

12 0.21459
13 -0.18885 .

14 -0.00343
15 0.12089 *
16 -0.05776
17 -0.04419 .

18 0.24284 ****.

19 -0.19687 ***I

20 0.17587
21 -0.01964

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.36524
2 -0.23954 *
3 0.01458
4 0.03188
5 -0.13901
6 -0.02316
7 -0.05206 *

8 -0.12198 *
9 -0.05044 *
10 -0.18778 **

11 -0.06176 *
12 0.06619 *
13 0.24683
14 -0.08525 *
15 -0.00620
16 0.02446
17 -0.13463
18 -0.16076 *'

19 0.07290 *
20 -0.26233 *
21 0.03255 *
22 0.07362 *
23 0.07721 .

24 0.08937 **
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Autocorrelation Check for White Noise

To Chi Autocorrelations
Lag Square DF Prob
6 7.71 6 0.260 0.365 -0.074 -0.109 -0.000 -0.076 -0.108
12 12.37 12 0.416 -0.082 -0.110 -0.113 -0.176 -0.131 0.042
18 22.81 18 0.198 0.314 0.172 -0.014 -0.009 -0.028 -0.167
24 26.61 24 0.323 -0.079 -0.118 -0.102 -0.011 0.080 0.075
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ARIMA Procedure

Name of variable = USAFE MAC Tonnage.

Mean of working series = 9294
Standard deviation = 736.588
Number of observations = 42

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0 542562 1.00000 AA**AA****A*A**AAAA

1 221749 0.40871 . *A*AAA**
2 28547.429 0.05262 .

3 107850 0.19878 I*A
4 278311 0.51296 I**AAAA*A*A
5 175977 0.32435 , *AAA**

6 22780.476 0.04199 1
7 76289.381 0.14061 • .

8 147937 0.27266 AAAAA

9 57770.810 0.10648
10 -29755.071 -0.05484 .

11 -8761.167 -0.01615 I

12 89693.214 0.16531 . *

13 -24931.643 -0.04595 *
14 -105047 -0.19361 * ***

15 -78078.024 -0.14391 *AA

16 -1535.619 -0.00283
17 -125921 -0.23209 *AAA

18 -170698 -0.31462 **AAA *

19 -105633 -0.19469 AAAA

20 -18452.095 -0.03401 , A

21 -116275 -0.21431
22 -158866 -0.29281 : AAAA

23 -82926.667 -0.15284 * *

24 -45710.881 -0.08425 AA

" marks two standard errors
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Inverse Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 3 9 1
1 -0.38692
2 0.14777 * *
3 0.04984 *

4 -0.17805 ***

5 -0.13524 ***

6 0.14497 *
7 -0.17260 *

8 0.08650 a

9 0.05418 *

10 -0.15073 **A

11 0.17520 *A

12 -0.18141 *

13 0.02496
14 -0.02037
15 0.08750
16 -0.10443 *

17 0.20913
18 -0.08627 a*

19 0.08367 p

20 -0.06586
21 0.02162

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.40871 a

2 -0.13737 * A

3 0.28200 *AAA"

4 0.41439 a

5 -0.02568
6 -0.05271

7 0.11075 **
8 -0.06273 .

9 -0.15383 * a

10 -0.03165 a

11 -0.10071 *

12 0.09457 a

13 -0.19490 a

14 -0.04429 a

15 -0.05405
16 -0.04166 a

17 -0.27164 a

18 0.04371 a

19 -0.05067
20 0.07602 a*

21 -0.03425
22 0.07611 * A

23 0.05113
214 -0.10441
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ARIMA Procedure

Autocorrelation Check for White Noise

To Chi Autocorrelations
Lag Squiare DF Prob
6 27.67 6 0.000 0.409 0.053 0.199 0.513 0.324 0.042

12 35.26 12 0.000 0.141 0.273 0.106 -0.055 -0.016 0.165
18 50.89 18 0.000 -0.046 -0.194 -0.144 -0.003 -0.232 -0.315
24 69.00 24 0.000 -0.195 -0.034 -0.214 -0.293 -0.153 -0.084

252



Appendix R: DSXR USAFE MAC Model SAS Regression Output

Dependent Variable: MAC

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 10782499.865 10782499.865 6.808 0.0402
Error 6 9503160.0104 1583860.0017
C Total 7 20285659.875

Root MSE 1258.51500 R-square 0.5315
Dep Mean 9092.37500 Adj R-sq 0.4535
C.V. 13.84143

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > :T

INTERCEP 1 -9755.237091 7237.3126493 -1.348 0.2263
FH 1 0.244523 0.09371681 2.609 0.0402

Durbin-Watson D 0.986
(For Number of Obs.) 8
Ist Order Autocorrelation 0.369

Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95%
Obs MAC Value Predict Mean Mean Predict Predict

1 8932.0 8659.0 474.940 7496.9 9821.2 5367.o 11950.5
2 9037.0 7695.8 696.035 5992.7 9399.0 4176.8 11214.9
.3 11433.0 11645.1 1074.807 9015.2 14275.1 7595.5 15694.8
4 11167.0 10171.6 607.522 8685.1 11658.2 6752.1 13591.1
5 9956.0 8689.8 470.941 7537.5 9842.2 5401.8 11977.9
6 8292.0 8934.4 449.055 7835.6 10033.2 5t64.7 12204.0
7 6995.0 8420.1 514.166 7162.0 9678.2 5093.6 11746.7
8 6927.0 8523.1 495.572 7310.4 9735.7 5213.4 11832.7
9 6905.8 948.837 4584.1 9227.5 3049.2 10762.4

10 8376.4 522.774 7097.2 9655.5 5041.8 11710.9
ii 11183.2 916.593 8940.4 13426.0 7373.6 14992.9
12 10542.6 711.975 8800.4 12284.7. 7004.5 14080.7
13 6974.5 925.660 4709.5 9239.5 3151.7 10797.3
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Std Err Student Cook's
Obs Residual Residual Residual -2-1-0 1 2 D

1 273.0 1165.458 0.234 0.005

2 1341.2 1048.521 1.279 0.360

3 -212.1 654.714 -0.324 0.141

4 995.4 1102.169 0.903 0.124

5 1266.2 1167.080 1.085 0.096

6 -642.4 1175.674 -0.546 : 0.022

7 -1425.1 1148.692 -1.241 0.154

8 -1596.1 1156.835 -1.380 0.175

9

10
11
12

13

Sum of Residudls 0

Sum of Squared Residuals 9503160.0104

Predicted Resid SS (Press) 15337245.361
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Univariate Procedure

Variable"RESIDUAL Residual

Moments

N 8 Sum Wgts 8
Mean 0 Sum 0
Std Dev 1165.158 Variance 1357594
Skewness -0.21508 Kurtosis -1.62983
USS 9503160 CSS 9503160
CV . Std Mean 411.9457

T:Mean=O 0 Prob>:T: 1.0000
Num ^= 0 8 Num > 0 4

M(Sign) 0 Prob>:M: 1.0000

Sgn Rank -1 Prob>S 0.9453
W:Normal 0.912811 Prob<W 0.3791

Quantiles(Def=5)

100% Max 1341.154 99% 1341.154
75% Q3 1130.767 95% 1341.154
50% Med 30.42555 90% 1341.154

25% Q1 -1033.74 10% -1596.07
0% Min -1596.07 5% -1596.07

1% -1596.07

Range 2937.22
Q3-Q1 2164.504
Mode -1596.07

Extremes

Lowest Obs Highest Obs
-1596.07( 8) -212.129( 3)

-1425.12( 7) 272.98( 1)
-642.352( 6) 995.3637( 4)

-212.129( 3) 1266.17( 5)

272.98( 1) 1341.154( 2)

Missing Value
Count 5

% Count/Nobs 38.46
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Appendix S: PACAF MAC Multiple Regression Model SAS Output

Dependent Variabte: LMAC

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 4 0.24888 0.06222 21.417 0.0001

Error 9 0.02615 0.00291
C Total 13 0.27503

Root MSE 0.05390 R-square 0.9049

Dep Mean 8.66209 Adj R-sq 0.8627
C.V. 0.62225

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob > :T

INTERCEP 1 14.700077 3.45308085 4.257 0.0021

AMN 1 -0.000375 0.00022556 -1.664 0.1306

B52 1 0.000298 0.00013712 2.175 0.0576

FI5 1 -0.000224 0.00008736 -2.563 0.0305

TP2 1 0.575525 0.09754821 5.900 0.0002

Variance

Variable DF Inflation

INTERCEP 1 0.00000000
ANN 1 2.64958340
B52 1 2.12662552
FI5 1 2.61012673
TP2 1 3.56787427

Collinearity Diagnostics(intercept adjusted)

Condition Var Prop Var Prop Var Prop Var Prop

Number Eigenvalue Number AMN B52 F15 TP2

1 2.42328 1.00000 0.0491 0.0324 0.0282 0.0393

2 1.14843 1.45261 0.0238 0.1782 0.1443 0.0146

3 0.25379 3.09004 0.8755 0.6235 0.0588 0.0396

4 0.17450 3.72648 0.0516 0.1660 0.7687 0.9065

Durbin-Watson D 2.409
(For Number of Obs.) 14
Ist Order Aut.ouorrela tion -0.214.
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Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95%
Obs LMAC Value Predict Mean Mean Predict Predict

1 8.6891 8.7059 0.023 8.6539 C.7579 8.5733 8.82el
2 8.7134 8.7373 0.025 8.6802 8.7944 8.6026 8.8719
3 8.6706 8.6245 0.038 8.5380 8.7109 8.4750 8.7739
4 8.6250 8.7108 0.025 8.6549 8.7668 8.5767 8.8450
5 8.8220 8.8031 0.037 8.7183 8.8879 8.6546 8.9516
6 8.7459 8.6938 0.026 8.6352 8.7524 8.5585 8.8291
7 8.6871 8.7074 0.031 8.6365 8.7784 8.5664 8.8485
8 8.7389 8.7427 0.027 8.6808 8.8046 8.6059 8.8794
9 8.8332 8.7457 0.028 8.6834 8.8079 8.6088 8.8826
10 8.7394 8.7162 0.018 8.6749 8.7575 8.5875 8.8450
11 8.6550 8.7095 0.034 8.6331 8.7859 8.5656 8.8534
12 8.6181 8.6263 0.044 8.5271 8.7255 8.4691 8.7835
13 8.4613 8.4905 0.030 8.4220 8.5590 8.3506 8.6303
14 8.2703 8.2557 0.049 8.1446 8.3667 8.0908 8.4206
15 8.0890 0.080 7.9076 8.2705 7.8704 8.3077
16 7.9468 0.142 7.6251 8.2685 7.6028 8.2908
17 8.1010 0.090 7.8964 8.3055 7.8628 8.3391
18 8.1417 0.081 7.9589 8.3245 7.9220 8.3615
19 . 7.9952 0.116 7.7337 8.2567 7.7067 8.2837

Std Err Student Cook's
Obs Residual Residual Residual -2-1-0 1 2 D

1 -0.0168 0.049 -0.344 0.005
2 -0.0239 0.048 -0.501 0.014
3 0.0461 0.038 1.213 0.297
4 -0.0858 0.048 -1.793 0.171
5 0.0189 0.039 0.489 0.045
6 0.0521 0.047 1.103 0.073
7 -0 0203 0.044 -0.464 0.022
8 -0.00379 0.046 -0.082 I 0.000

9 0.0875 0.046 1.888 0.251
10 0.0231 0.051 0.456 0.003
11 -0.0545 0.042 -1.297 0.218
12 -0.00818 0.031 -0.261 0.027
13 -0.0292 0.045 -0.655 A: 0.040

14 0.0146 0.022 0.655 A 0.416

15
16
17
18
19

Sum ot Residuals 0
Sum of Squared Residuals 0.0261
Predicted Resid SS (Press) 0.0611
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Univariate Procedure

Variable=RESIDUAL Residual

Moments

N 14 Sum Wgts 1I
Mean 0 Sum 0
Std Dev 0.044847 Variance 0.002011
Skewness 0.085316 Kurtosis 0.256101
USS 0.026146 CSS 0.026146
CV . Std Mean 0.011986
T:Mean=O 0 Prob>:T: 1.0000
Num ^= 0 14 Num > 0 6
M(Sign) -1 Prob>:M: 0.7905
Sgn Rank -2.5 Prob>:S: 0.9032
W:Normal 0.986504 Prob<W 0.9882

Quantiles(Def=5)

100% Max 0.087503 99% 0.087503
75% Q3 0.023143 95% 0.087503
50% Med -0.00598 90% 0.052137
25% QI -0.02387 10% -0.05446
0% Min -0.08585 5% -0.08585

1% -0.08585
Range 0.173351
Q3-Q1 0.047016
Mode -0.08585

Extremes

Lowest Obs Highest Obs
-0.08585( 4) 0.018934( 5)
-0.05446( 11) 0.023143( 10)
-0.02922( 13) 0.046139( 3)
-0.02387( 2) 0.052137( 6)
-0.02034( 7) 0.087503( 9)

Missing Value
Count 5
% Count/Nobs 26.32
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Appendix T: PACAF MAC Independent Variable Correlation Matrix

Correlation Analysis

10 'VAR' Variables: A10 B52 C130 C135 F4
F15 F16 OFF AMN TP2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

AlO 19 2507 281.4353 47625 1759 2856
B52 19 1569 147.7980 29819 1325 1782
C130 19 6920 1203 131475 4370 8778
C135 19 3756 374.9541 71371 2989 4462
F4 19 5598 647.9980 106362 4112 6706
F15 19 5462 308.6415 103771 4774 6228
F16 19 7419 1983 140967 4438 11430
OFF 19 5882 105.1704 111767 5727 5995
AMN 19 15514 105.9798 294775 15385 15664
TP2 19 0.6579 0.4730 12.5000 0 1.0000
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Correlation Analysis

Pearson Correlation Coefficients / Prob > R: under Ho: Rho=O
/ Number of Observations

A1O B52 C130 C135 F4

AIO 1.00000 0.31109 0.41437 0.45830 0.60496
0.0 0.1948 0.0778 0.0484 0.0061
19 19 19 19 19

B52 0.31109 1.00000 -0.34951 -0.13225 0.18190
0.1948 0.0 0.1424 0.5894 0.4561

19 19 19 19 19

C130 0.41437 -0.34951 1.00000 0.80641 0.33316
0.0778 0.1424 0.0 0.0001 0.1634
19 19 19 19 19

C135 0.45830 -0.13225 0.80641 1.00000 0.55106
0.0484 0.5894 0.0001 0.0 0.0145

19 19 19 19 19

F4 0.60496 0.18190 0.33316 0.55106 1.00000
0.0061 0.4561 0.1634 0.0145 0.0
19 19 19 19 19

F15 0.28631 0.04398 -0.13391 -0.25175 0.12470
0.2347 0.8581 0.5847 0.2985 G.6110
19 19 19 19 19

FI6 -0.24592 0.25638 -0.80188 -0.83621 -0.33694

0.3102 0.2894 0.0001 0.0001 0.1584

19 19 19 19 19

OFF 0.31038 -0.30483 0.73154 0.60147 0.46146
0.1959 0.2045 0.0004 0.0064 0.0467

19 19 19 19 19

AMN -0.27944 0.55184 -0.75573 -0.50929 -0.07749
0.2466 0.0143 0.0002 0.0259 .7525
19 19 19 19 19

TP2 0.51349 -0.25414 0.72460 0.75074 0.62984

0.0245 0.2938 0.0004 0.0002 0.0039
19 19 19 19 19
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Correlation Andlysis

Pearson Correlation Coetficients / Prob > :R: under Ho: Rho=O
/ Number of Observations

F15 F16 OFF AMN TP2

AlO 0.28631 -0.24592 0.31038 -0.27944 0.51349
0.2347 0.3102 0.1959 0.2466 0.0245
19 19 19 19 19

B52 0.04398 0.25638 -0.30483 0.55184 -0.25414
0.8581 0.2894 0.2045 0.0143 0.2938
19 19 19 19 19

C130 -0.13391 -0.80188 0.73154 -0.75573 0.72460
0.5847 0.0001 0.0004 0.0002 0.0004
19 19 19 19 19

C135 -0.25175 -0.83621 0.60147 -0.50929 0.75074
0.2985 0.0001 0.0064 0.0259 0.0002
19 19 19 19 19

F4 0.12470 -0.33694 0.46146 -0.07749 0.62984
0.6110 0.1584 0.0467 0.7525 0.0039
19 19 19 19 19

FI5 1.00000 0.33108 -0.21214 -0.08482 -0.05286
0.0 0.1662 0.3833 0.7299 0.8298
19 19 19 19 19

F16 0.33108 1.00000 -0.75728 0.69479 -0.73101
0.1662 0.0 0.0002 0.0010 0.0004
19 19 19 19 19

OFF -0.21214 -0.75728 1.00000 -0.76597 0.87462
0.3833 0.0002 0.0 0.0001 0.0001
19 19 19 19 19

AMN -0.08482 0.69479 -0.76597 1.00000 -0.70041
0.7299 0.0010 0.0001 0.0 0.0008
19 19 19 19 19

TP2 -0.05286 -0.73101 0.87462 -0.70041 1.00000
0.8298 0.0004 0.0001 0.0008 0.0
19 19 19 19 19
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Appendix U: USAFE MAC Multiple Regression Model SAS Output

Dependent Variable: LMAC

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 4 0.29379 0.07345 38.162 0.0001

Error 9 0.01732 0.00192
C Total 13 0.31111

Root MSE 0.04387 R-square 0.9443
Dep Mean 9.14729 Adj R-sq 0.9196

C.V. 0.47960

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=() Prob > V:

INTERCEP 1 12.070129 2.30016919 5.247 0.0005

OFF 1 0.000712 0.00016972 4.193 0.0023

AMN 1 -0.000396 0.00010479 -3.776 0.0044

A1O 1 0.000061234 0.00001052 5.820 0.0003

TP2 1 0.227948 0.06024109 3.784 0.0043

Variance

Variable DF Inflation

INTERCEP 1 0.00000000
OFF 1 3.56382732
AMN 1 2.69698262
AIO 1 1.40819433

TP2 1 2.05395829

Collinearity Diagnostics(intercept adjusted)

Condition Var Prop Var Prop Var Prop Var Prop
Number Eigenvalue Number OFF AMN A1O TP2

1 2.64072 1.00000 0.0336 0.0408 0.0439 0.0424

2 0.77644 1.84419 0.0203 0.0097 0.5708 0.1878
3 0.40358 2.55797 0.0293 0.3800 0.3657 0.4058

4 0.17926 3.83814 0.9168 0.5695 0.0196 0.3640

Durbin-%atson D 2.449

(For Number or Obs.) 14
1st Order Autocorrelt ioni -0.235
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Dep Var Predict Std Err Lower95% Upper95% Lower95% Upper95%
Obs LMAC Value Predict Mean Mean Predict Predict

1 9.2359 9.2546 0.028 9.1912 9.3180 9.1369 9.3724
2 9.1460 9.1711 0.024 9.1165 9.2257 9.0578 9.2844
3 9.1990 9.1517 0.024 9.0966 9.2069 9.0382 9.2653
4 9.1467 9.1055 0.028 9.0425 9.1685 8.9880 9.2231
5 9.2599 9.2933 0.019 9.2512 9.3355 9.1855 9.4011
6 9.2780 9.2254 0.016 9.1888 9.2620 9.1196 9.3312
7 9.0974 9.1666 0.020 9.1209 9.2122 9.0574 9.2759
8 9.1091 9.1402 0.021 9.0921 9.1882 9.0299 9.2504
9 9.3443 9.3368 0.028 9.2727 9.4008 9.2186 9.4549
10 9.3207 9.2720 0.021 9.2249 9.3192 9.1622 9.3819
11 9.2059 9.2233 0.018 9.1828 9.2638 9.1161 9.3305
12 9.0230 9.0277 0.038 8.9415 9.1139 8.8963 9.1591
13 8.8530 11.9481 0.028 8.7852 8.9109 8.7306 8.9655
14 8.8432 8.8456 0.040 8.7541 8.9371 8.7106 8.9806
15 8.7637 0.041 8.6716 8.8559 8.0283 8.8992
16 8.7496 0.053 8.6297 8.8694 8.5940 8.9052
17 8.8565 0.052 8.7389 8.9740 8.7026 9.0103
18 8.8808 0.053 8.7617 8.9999 8.7258 9.0358
19 8.7001 0.056 8.5745 8.8257 8.5400 8.8602

Std Err Student Cook's
Obs Residual Residual Residual -2-1-0 1 2 D
1 -0.0187 0.034 -0.554 0.042
2 -0.0251 0.037 -0.685 0.041
3 0.0472 0.036 1.295 0.150
4 0.0411 0.034 1.214 0.199
5 -0.0334 0.040 -0.842 0.031
6 0.0526 0.041 1.290 0.052
7 -0.0692 0.039 -1.778 0.170
8 -0.0311 0.038 -0.809 0.040
9 0.00748 0.034 0.223 0.007
10 0.0487 0.039 1.261 0.093
11 -0.0174 0.040 -0.434 0.008
12 -0.00465 0.022 -0.214 0.028
13 0.00487 0.034 0.143 0.003
14 -0.00243 0.017 -0.143 0.023
15
16
17
18
19

Sum of Residuals -374E-17
Sum of Squared Residuals 0.0173
Predicted Resid SS (Press) 0.0317
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Univariate Procedure

Variable=RESIDUAL Residual

Moments

N 14 Sum Wg-ts 14
Mean 0 Sum 0
Std Dev 0.036502 Variance 0.001332
Skewness 0.017305 Kurtosis -0.61031
USS 0.017321 CSS 0.017321
CV . Std Mean 0.009756
T:Mean=O 0 Prob>:T: 1.0000
Num ^= 0 14 Num > 0 b
M(Sign) -1 Prob>:M: 0.7905
Sgn Rank 0.5 Prob>:S: 1.0000
W:Normal 0.937476 Prob<W 0.3719

Quantiles(Def=5)

100% Max 0.052587 99% 0.052587
75% Q3 0.04114 95% 0.052587
50% Med -0.00354 90% 0.048669
25% QI -0.02508 10% -0.03343
0% Min -0.06923 5% -0.06923

1% -0.06923
Range 0.121818

Q3-QI 0.06622
Mode -0.06923

Extremes

Lowest Obs Highest Obs
-0.06923( 7) 0.007485( 9)

-0.03343( 5) 0.04114( 4)
-0.03107( 8) 0.047231( 3)
-0.02508( 2) 0.048669( lo)
-0.01871( 1) 0.052587( 6)

Missing Value
Count 5
% Count/Nobs 26.32
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Appendix V: USAFE MAC Independent Variable Correlation Matrix

Correlation Analysis

10 'VAR' Variables: A1O C130 C135 F4 F15
F16 Fill OFF AMN TP2

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

A1O 19 11992 1360 227854 9874 14426

C130 19 8600 825.2308 163397 7079 10724

C135 19 4445 405.3585 84459 3595 5099

F4 19 6477 3131 123059 2677 13074

F15 19 7257 828.2040 137885 5390 9055

F16 19 16564 3575 314710 11449 23118

Fill 19 11051 759.7352 209964 9966 12716

OFF 19 10205 137.1963 193896 10004 10354
AMN 19 28213 185.2100 536042 27951 28470
TP2 19 0.6579 0.4730 12.5000 0 1.0000
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Correlation Analysis

Pearson Correlation Coefficients / Prob > :RI under Ho: Rho=O
/ Number of Observations

A1O C130 C135 F4 FI5

AIO 1.00000 -0.06584 0.50482 0.51813 0.74610
0.0 0.7889 0.0275 0.0231 0.0002

19 19 19 19 19

C130 -0.06584 1.00000 0.04257 -0.01769 -0.11007

0.7889 0.0 0.8626 0.9427 0.6537

19 19 19 19 19

C135 0.50482 0.04257 1.00000 0.52745 0.47312
0.0275 0.8626 0.0 0.0203 0.0408

19 19 19 19 19

F4 0.51813 -0.01769 0.52745 1.00000 0.52715

0.0231 0.9427 0.0203 0.0 0.0204

19 19 19 19 19

F15 0.74610 -0.11007 0.47312 0.52715 1.00000

0.0002 0.6537 0.0408 0.0204 0.0

19 19 19 19 19

F16 -0.00760 -0.03300 -0.34698 -0.77757 0.026oi

0.9754 0.8933 0.1455 U.0001 0.9139
19 19 19 19 19

Fill 0.57936 0.02693 0.18967 -0.02839 0.59208
0.0093 0.9129 0.4367 0.9082 0.0076
19 19 19 19 19

OFF 0.38753 0.04812 0.28040 0.75881 0.27106
0.1011 0.8449 0.2449 0.0002 0.2616

19 19 19 19 19

AMN 0.52065 -0.05458 0.14959 0.62422 0.42345

0.0223 0.8244 0.5410 0.0043 0.0708

19 19 19 19 19

TP2 0.18056 0.12084 0.21324 0.62422 0.18696

0.4595 0.6222 0.3807 0.0043 0.4434

19 19 19 19 19
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Correlation Analysis

Pearson Correlation Coefficients / Prob > :R: under Ho: Rho=

/ Number of Observations

F16 Fill OFF AMN TP2

A1O -0.00760 0.57936 0.38753 0.52065 0.18056
0.9754 0.0093 0.1011 0.0223 0.4595
19 19 19 19 19

C130 -0.0330u 0.02693 0.04812 -0.05458 0.12084
0.8933 0.9129 0.8449 0.8244 0.6222
19 19 19 19 19

C135 -0.34698 0.18967 0.28040 0.14959 0.21324
0. 1455 0.4367 0.2449 0.5410 0.3807
19 19 19 19 L9

F4 -0.77757 -0.02839 0.75881 0.62422 0.62422
0.0001 0.9082 0.0002 0.0043 0.004,:
19 19 19 19 19

F15 0.02061 0.59208 0.27106 0.42345 0.18696
0.9139 0.0076 0.2616 O.0708 0.4434
19 19 19 19 19

Fio 1.00000 0.4402b -0.o8912 -0.35033 -0.65512
0.0 0.0592 0.0011 0.1414 0.0023
19 19 19 19 19

Fill 0.44020 1.0(J000 0.05235 -0.04921 0.020J09
0.0592 0.0 ,-.8315 0.8414 0.9130
19 19 19 19 19

OFF -0.68912 0.05235 1.00001" 0.53393 0.75588
0.001 t 0.8315 0.0 0.0185 0.0002
19 19 19 19 19

MN -0.35033 -0.04921 0.53393 1.00000 0. 07693
O.1414 0.8414 0.0185 0.0 0.Y543
19 19 19 1'; 19

FP2 -0.65512 0.02069 0.75588 0.07693 1.00000
0.0023 0.9330 0.0002 0.7543 0.0
19 19 19 19 10



Appendix W: PACAF and USAFE MAC Multiple Variable Network Output.

PACAF MAC FULL MULTIVARIABLE NETWORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY et (et-e(t1)) 2  et2

85/3 5938 6174 55535 11055 -236 55535
85/4 6084 5892 36992 63073 192 183178 36992
86/1 5829 5865 1279 15 -36 52025 1279
86/2 5569 6249 4('267 69621 -680 414924 462267
86/3 6782 6421 130504 900872 361 1084006 130504
86/4 6285 6136 22175 204433 149 45089 22175
87/1 5926 6383 208886 8676 -457 367178 208886
87/2 6241 6171 4912 166581 70 277858 4912
87/3 6858 6394 215354 1050918 464 155220 215354
87/4 6244 6231 175 169038 13 203261 175
88/1 5739 6123 147465 8809 -384 157791 147465
88/2 5531 5508 525 91118 23 165591 525
88/3 4728 4835 11435 1220709 -107 16862 11435
88/4 3906 3961 3041 3712778 -55 2682 3041

Actual Predicted Total: 3125666 1300544
FY/Qtr Tons Tons AE

89/1 3841 3890 49
89/2 4124 3905 219
89/3 4056 3947 109
89/4 3841 3829 12
90/1 4305 3698 607

MAE: 199
MIN 12
MAX 607
SSE: 1300544
SSY: 7677696
RSQUARE: 0.83
DW: 2.40
Y BAR: 5832.86
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PACAF MAC REDUCED MULTIVARIABLE NETWORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY et (et-e(t-,,) 2  et2

85/3 5938 6139 40533 11055 -201 40533
85/4 6084 6088 16 63073 -4 38923 16
86/1 5829 5727 10422 15 102 11263 10422
86/2 5569 6176 368183 69621 -607 502493 368183
86/3 6782 6352 184577 900872 430 1074135 184577
86/4 6285 5993 85510 204433 292 18825 85510
87/1 5926 6214 82979 8676 -288 336960 82979
87/2 6241 6194 2211 166581 47 112279 2211
87/3 6858 6200 432393 1050918 658 372767 432393
87/4 6244 6009 55049 169038 235 178879 55049
88/1 5739 5842 10560 8809 -103 113829 10560
88/2 5531 5506 644 91118 25 16421 644
88/3 4728 4672 3107 1220709 56 921 3107
88/4 3906 3929 528 3712778 -23 6195 528

Actual Predicted Total: 2783890 1276712
FY/Qtr Tons Tons AE

89/1 3841 3783 58
89/2 4124 3749 375
89/3 4056 3845 211
89/4 3841 3888 47
90/1 4305 3739 566

MAE: 251
MIN 47
MAX 566
SSE: 1276712
SSY: 7677696
RSQUARE: 0.83
DW: 2.18
Y BAR: 5832.86
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USAFE MAC FULL MULTIVARIABLE NETWORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY et (et-el)- et'

85/3 10259 10234 624 592130 25 624
85/4 9377 9494 13671 12656 -117 20137 13671
86/1 9887 9680 42686 158006 207 104672 42686
86/2 9383 9339 1908 11342 44 26545 1908
86/3 10508 10521 160 1037342 -13 3173 160
86/4 10700 10399 90846 1465310 301 98631 90846
87/1 8932 9116 33992 310806 -184 235977 33992
87/2 9037 8873 27027 204756 164 121640 27027
87/3 11433 11213 48315 3777192 220 3070 48315
87/4 11167 11139 783 2814006 28 '36794 783
88/1 9956 9991 1205 217622 -35 3931 1205
88/2 8292 8217 5598 1434006 75 11997 5598
88/3 6995 6974 460 6222530 21 2850 460
88/4 6927 6862 4163 6566406 65 1856 '*163

Actual Predicted Total: 671274 2714'38
FY/Qtr Tons Tons AE

89/1 7569 6642 927
89/2 6005 6013 8
89/3 6260 6154 106
89/4 6432 6389 43
90/1 5721 5824 103

MAE: 237
MIN 8
MAX 927
SSE: 271438
SSY: 24824114
RSQUARE: 0.99
DW: 2.47
Y BAR: 9489.5
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USAFE MAC REDUCED MULTIVARIABLE NETUORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY et (e.-et t 1, e,

85/3 10259 10623 132792 592130 -364 132792
85/4 9377 9802 180960 12656 -425 3719 180960
86/1 9887 9605 79404 158006 282 500105 79404
86/2 9383 9045 114548 11342 338 3211 114548
86/3 10508 10912 163479 1037342 -404 551715 163479
86/4 10700 10268 186225 1465310 432 698666 186225
87/1 8932 9675 551548 310806 -743 1378746 551548
87/2 9037 9427 152280 204756 -390 124208 152280
87/3 11433 11322 12242 3777192 111 250876 12242
87/4 11167 10748 175462 2814006 419 95010 175462
88/1 9956 10278 103439 217622 -322 548340 103439
88/2 8292 8462 28866 1434006 -170 23019 28866
88/3 6995 6969 661 6222530 26 38264 661
88/4 6927 6983 3098 6566406 -56 6621 3098

Actual Predicted fntal: 422250(0 188500'
FY/Qtr Tons Tons AE

89/1 7569 6498 1071
89/2 6005 6462 457
89/3 6260 7096 836
89/4 6432 7275 843
90/1 5721 6247 526

MAE: 746
MIN 457
MAX 1071
SSE: 1885003
SSY: 24824114
RSQUARE: 0.92
DW: 2.24
Y BAR: 9489.50
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Appendix X: PACAF and USAFE MAC Time Series Network Data

PACAF MAC TONS USAFE MAC TONS
FY/QTR Actual Transformed Actual Transformed

83/1 5729 0.587733 8637 0.52192
/2 6768 0.8648 8242 0.45872
/3 6386 0.76293 9178 0.60848
/4 6203 0.714133 9327 0.63232

84/1 6020 0.665333 8704 0.53264
/2 6916 0.904267 9249 0.61984
/3 6050 0.673333 10058 0.74928
/4 5829 0.6144 9672 0.68752

85/1 5792 0.604533 9289 0.62624
/2 6188 0.710133 9439 0.65024
/3 5938 0.643467 10259 0.78144
/4 6084 0.6824 9377 0.64032

86/1 5829 0.6144 9887 0.72192
/2 5569 0.545067 9383 0.64128
/3 6782 0.868533 10508 0.82128
/4 6285 0.736 10700 0.852

87/1 5926 0.640267 8932 0.56912
/2 6241 0.724267 9037 0.58592
/3 6858 0.8888 11433 0.96928
/4 6244 0.725067 11167 0.92672

88/1 5739 0.5904 9956 0.73296
/2 5531 0.534933 8292 0.46672
/3 4728 0.3208 6995 0.2592
/4 3906 0.1016 6927 0.24832

89/I 3841 0.084267 7569 0.35104
/2 4124 0.159733 6005 0.1008
/3 4056 0.1416 6260 0.1416
/4 3841 0.084267 6432 0.16912

90/1 4305 0.208 5721 0.05536

Variable I Transformation Equations

PACAF MAC Transformed MAC = (MAC - 3900)(.4/1500) +.1

USAFE MAC Transformed MAC = (MAC - 6000)(.4/2500) +.1
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Appendix Y: PACAF and USAFE MAC Time Series Network Output

PACAF MAC TIME SERIES NETWORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY e, (e,-e, 1_)' e,-

84/1 6020 5900 14456 9458 120 14456
84/2 6916 6213 494816 986546 703 340119 494816
84/3 6050 6247 38681 16193 -197 810191 38681
84/4 5829 5885 3089 8789 -56 19908 3089
85/1 5792 6054 68795 17096 -262 42729 68795
85/2 6188 6391 41187 70358 -203 3522 41187
85/3 5938 6277 114940 233 -339 18518 114940
85/4 6084 6095 127 26002 -11 107438 127
86/1 5829 6137 94628 8789 -308 87833 94628
86/2 5569 6183 377245 125139 -614 93995 377245
86/3 6782 6198 340548 738311 584 1434647 340548
86/4 6285 6372 7632 131225 -87 45(140 7632
87/1 5926 5916 98 11 10 9456 98
87/2 6241 5893 120769 101283 348 114000 120769
87/3 6858 6324 284660 874693 534 34602 284660
87/4 6244 6180 4121 103202 64 220277 4121
88/1 5739 5828 7854 33764 -89 23355 7854
88/2 5531 6033 252151 153468 -502 171001 252151
88/3 4728 4796 4562 1427428 -68 188878 4502
88/4 3906 3810 9259 4067281 96 26821 9251)

Actual Predicted Total: 4197430 2279617
FY/Qtr Tons Tons AE

89/1 3841 3868 27
89/2 4124 4014 110
89/3 4056 3987 69
89/4 3841 3893 52
90/1 4305 3887 418

MAE: 135
MIN: 27
MAX: 418
SSE: 2279617
SSY: 8899264
RSQUARE: 0.74
DW: 1.84
Y BAR: 5922.75
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USAFE MAC TIME SERIES NETWORK OUTPUT

Actual Predicted
FY/Qtr Tons Tons SE SY et (et-eflt-)) 2  e.

84/1 8704 10025 1745487 576385 -1321 1745487
84/2 9249 9526 76525 45882 -277 1091059 76525
84/3 10058 10409 123096 353787 -351 5508 123096
84/4 9672 10401 531004 43597 -729 142771 531004
85/1 9289 9522 54490 30346 -233 245291 54490
85/2 9439 9853 171127 586 -414 32488 171127
85/3 10259 10507 61485 633298 -248 27461 61485
85/4 9377 10441 1132841 7430 -1064 666489 1132841
86/1 9887 9620 71249 179606 267 1772293 71249
86/2 9383 10203 672482 6432 -820 1181515 672482
86/3 10508 10308 40093 1091607 200 1040974 40093
86/4 10700 10324 141010 1529674 376 30724 141010
87/1 8932 10044 1235974 282173 -1112 2211931 1235974
87/2 9037 9177 19591 181646 -140 944347 19591
87/3 11433 10712 519427 3880112 721 740772 519427
87/4 11167 11251 7054 2902934 -84 647542 7054
88/1 9956 9148 653399 242852 808 796233 653399
88/2 8292 8796 254262 1371709 -504 1722853 254262
88/3 6995 7711 512754 6092011 -716 44870 512754
88/4 6927 6306 385602 6432310 621 1787669 385602

Actual Predicted Total: 15132788 8408951
FY/Qtr Tons Tons AE

89/1 7569 6482 1087
89/2 6005 6115 110
89/3 6260 5946 314
89/4 6432 6012 420
90/1 5721 5986 265

MAE: 439
MIN: 110
MAX: 1087
SSE: 8408951
SSY: 25884379
RSQUARE: 0.68
DW: 1.80
Y BAR: 9463.20
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Appendix Z: PACAF and USAFE MSC, MAC and Total Flying Hour Data

I I
PACAF USAFE

FLYING MSC MAC FLYING MSC MAC
Year Qtr HOURS (TONS) (TONS) HOURS (TONS) (TONS)

1978 1 35287 31163 5421 57480 46778 9828
2 37575 30967 5801 52034 38450 8942
3 34865 32924 6021 64399 47078 9793
4 35922 32018 5754 69807 37450 9430

1979 1 35310 33469 5427 55423 48574 8821
2 37593 30548 5456 56900 44156 8831
3 35600 33046 5692 71221 44041 8841
4 35615 34991 5940 71846 44296 9322

1980 1 35622 33145 6495 60461 42971 8496
2 37403 30312 6647 58808 50901 8573
3 36133 35818 6951 69735 56271 8867
4 34429 32220 6406 68069 49844 9174

1981 1 36236 35198 5902 63546 53377 9244
2 35292 30649 6016 65588 53945 8372
3 36480 35193 6166 75263 60785 9170
4 36718 35396 6818 75477 54941 8747

1982 1 36194 37343 6363 61878 55855 8610
2 37007 41379 5860 70025 57543 8138
3 38635 43392 5934 80973 63076 9270
4 37534 42968 5368 78365 65851 9153

1983 1 37293 43039 5729 66217 91436 8637
2 39678 49651 6768 70496 93263 8242
3 39129 46352 6386 77627 83737 178
4 37617 35398 6203 77944 83617 9327

1984 1 40018 38462 6020 69485 88315 8704
2 40533 41800 6916 73093 86968 9249
3 39523 48352 6050 78651 101701 10058
4 38235 49203 5829 77702 85521 9672

1985 1 40802 47567 5792 69027 96200 9289
2 40828 49835 6188 70119 71083 9439
3 41344 59435 5938 83336 83702 10259
4 40983 48235 6084 79858 77001 9377

1986 1 42905 49040 5829 75552 75830 9887
2 41942 40829 5569 74412 79563 9383
3 41476 42134 6782 80673 71583 10508
4 41372 34675 6285 77628 55248 10700

1987 1 44270 42681 5926 75308 57088 8932
2 42322 39408 6241 71368 63014 9037
3 44381 35796 6858 87519 68675 11433
4 43701 39293 6244 81329 69487 11167

1988 1 41308 42387 5739 75433 70569 9956
2 43994 48394 5531 76434 70459 8292
3 41724 55113 4728 74331 81479 0995
4 38897 42250 3906 74752 76619 6927
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1989 1 40676 43079 3841 68136 73847 7569
2 41960 45086 4124 74152 63853 6005
3 42353 44009 4056 85631 74806 6260
4 36584 41224 3841 83012 88613 6432

1990 1 36672 42355 4305 68417 64655 5721
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